Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Photonic Crystals and Microdisks

Based on multiple constructive/destructive interference photonic crystals allow shaping of the flow of light and to capture light in cavitities. Also, we investigate other photonic resonators like optical microdisks. 

Last topic, want to start at the beginning? Go to Dielectics Waveguides

Related publications by the TET group


Open list in Research Information System

Tailored UV Emission by Nonlinear IR Excitation from ZnO Photonic Crystal Nanocavities

S.P. Hoffmann, M. Albert, N. Weber, D. Sievers, J. Förstner, T. Zentgraf, C. Meier, ACS Photonics (2018), 5, pp. 1933-1942


Polarization Conversion Effect in Biological and Synthetic Photonic Diamond Structures

X. Wu, F.L. Rodríguez-Gallegos, M. Heep, B. Schwind, G. Li, H. Fabritius, G. von Freymann, J. Förstner, Advanced Optical Materials (2018), 6(24)

Polarization of light is essential for some living organisms and many optical applications. Here, an orientation dependent polarization conversion effect is reported for light reflected from diamond‐structure‐based photonic crystals (D‐structure) inside the scales of a beetle, the weevil Entimus imperialis. When linearly polarized light propagates along its 〈100〉 directions, the D‐structure behaves analogous to a half‐wave plate in reflection but based on a different mechanism. The D‐structure rotates the polarization direction of linearly polarized light, and reflects circularly polarized light of both handednesses without changing it. This polarization effect is different from circular dichroism occurring in chiral biological photonic structures discovered before. The structural origin of this effect is symmetry breaking inside D‐structure's unit cell. This finding demonstrates that natural photonic structures can exploit multiple functionalities inherent to the design principles of their structural organization. Aiming at transferring the inherent polarization effect of the biological D‐structure to technically realizable materials, three simplified biomimetic structural models are derived and it is theoretically demonstrated that they retain the effect. Out of these structures, functioning woodpile structure prototypes are fabricated.


    Fabrication and characterization of two-dimensional cubic AlN photonic crystal membranes containing zincblende GaN quantum dots

    S. Blumenthal, M. Bürger, A. Hildebrandt, J. Förstner, N. Weber, C. Meier, D. Reuter, D.J. As, physica status solidi (c) (2016), 13(5-6), pp. 292-296

    We successfully developed a process to fabricate freestanding cubic aluminium nitride (c-AlN) membranes containing cubic gallium nitride (c-GaN) quantum dots (QDs). The samples were grown by plasma assisted molecular beam epitaxy (MBE). To realize the photonic crystal (PhC) membrane we have chosen a triangular array of holes. The array was fabricated by electron beam lithography and several steps of reactive ion etching (RIE) with the help of a hard mask and an undercut of the active layer. The r/a- ratio of 0.35 was deter- mined by numerical simulations to obtain a preferably wide photonic band gap. Micro-photoluminescence (μ-PL) measurements of the photonic crystals, in particular of a H1 and a L3 cavity, and the emission of the QD ensemble were performed to characterize the samples. The PhCs show high quality factors of 4400 for the H1 cavity and about 5000/3000 for two different modes of the L3 cavity, respectively. The energy of the fundamental modes is in good agreement to the numerical simulations.


      Phase sensitive properties and coherent manipulation of a photonic crystal microcavity

      W. Quiring, B. Jonas, J. Förstner, A.K. Rai, D. Reuter, A.D. Wieck, A. Zrenner, Optics Express (2016), 24(18)

      We present phase sensitive cavity field measurements on photonic crystal microcavities. The experiments have been performed as autocorrelation measurements with ps double pulse laser excitation for resonant and detuned conditions. Measured E-field autocorrelation functions reveal a very strong detuning dependence of the phase shift between laser and cavity field and of the autocorrelation amplitude of the cavity field. The fully resolved phase information allows for a precise frequency discrimination and hence for a precise measurement of the detuning between laser and cavity. The behavior of the autocorrelation amplitude and phase and their detuning dependence can be fully described by an analytic model. Furthermore, coherent control of the cavity field is demonstrated by tailored laser excitation with phase and amplitude controlled pulses. The experimental proof and verification of the above described phenomena became possible by an electric detection scheme, which employs planar photonic crystal microcavity photo diodes with metallic Schottky contacts in the defect region of the resonator. The applied photo current detection was shown to work also efficiently at room temperature, which make electrically contacted microcavities attractive for real world applications.


      Simulation of Planar Photonic Resonators

      S. Declair, J. Förstner, in: Handbook of Optical Microcavities, Pan Stanford Publishing Pte. Ltd., 2014


      Cubic GaN quantum dots embedded in zinc-blende AlN microdisks

      M. Bürger, R. Kemper, C. Bader, M. Ruth, S. Declair, C. Meier, J. Förstner, D. As, Journal of Crystal Growth (2013), 378, pp. 287-290

      Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.


        Whispering gallery modes in zinc-blende AlN microdisks containing non-polar GaN quantum dots

        M. Bürger, M. Ruth, S. Declair, J. Förstner, C. Meier, D.J. As, Applied Physics Letters (2013), 102(8), pp. 081105

        Whispering gallery modes (WGMs) were observed in 60 nm thin cubic AlN microdisk resonators containing a single layer of non-polar cubic GaN quantum dots. Freestanding microdisks were patterned by means of electron beam lithography and a two step reactive ion etching process. Micro-photoluminescence spectroscopy investigations were performed for optical characterization. We analyzed the mode spacing for disk diameters ranging from 2-4 lm. Numerical investigations using three dimensional finite difference time domain calculations were in good agreement with the experimental data. Whispering gallery modes of the radial orders 1 and 2 were identified by means of simulated mode field distributions.


        Photonic crystal waveguides intersection for resonant quantum dot optical spectroscopy detection

        X. Song, S. Declair, T. Meier, A. Zrenner, J. Förstner, Optics Express (2012), 20(13)

        Using a finite-difference time-domain method, we theoretically investigate the optical spectra of crossing perpendicular photonic crystal waveguides with quantum dots embedded in the central rod. The waveguides are designed so that the light mainly propagates along one direction and the cross talk is greatly reduced in the transverse direction. It is shown that when a quantum dot (QD) is resonant with the cavity, strong coupling can be observed via both the transmission and crosstalk spectrum. If the cavity is far off-resonant from the QD, both the cavity mode and the QD signal can be detected in the transverse direction since the laser field is greatly suppressed in this direction. This structure could have strong implications for resonant excitation and in-plane detection of QD optical spectroscopy.


          Numerical investigation of the coupling between microdisk modes and quantum dots

          S. Declair, T. Meier, J. Förstner, physica status solidi (c) (2011), 8(4), pp. 1254-1257

          We numerically investigate the coupling between circular resonators and study strong light‐matter coupling of single as well as multiple circular resonators to quantum‐mechanical resonators in two dimensional model simulations. For all cases, the computed resonances of the coupled system as function of the detuning show anti‐crossings. The obtained mode splittings of coupled optical resonators are strongly depending on distance and cluster in almost degenerate eigenstates for large distances, as is known from coupled resonator optical waveguides. Vacuum Rabi splitting is observed for a quantum dot strongly coupled to eigenmodes of single perfectly cylindrical resonators.


            Numerical analysis of coupled photonic crystal cavities

            S. Declair, T. Meier, A. Zrenner, J. Förstner, Photonics and Nanostructures - Fundamentals and Applications (2011), 9(4), pp. 345-350

            We numerically investigate the interaction dynamics of coupled cavities in planar photonic crystal slabs in different configurations. The single cavity is optimized for a long lifetime of the fundamental mode, reaching a Q-factor of ≈43, 000 using the method of gentle confinement. For pairs of cavities we consider several configurations and present a setup with strongest coupling observable as a line splitting of about 30 nm. Based on this configuration, setups with three cavities are investigated.


              Tuning quantum-dot based photonic devices with liquid crystals

              K.A. Piegdon, S. Declair, J. Förstner, T. Meier, H. Matthias, M. Urbanski, H. Kitzerow, D. Reuter, A.D. Wieck, A. Lorke, C. Meier, Optics Express (2010), 18(8)

              Microdisks made from GaAs with embedded InAs quantum dots are immersed in the liquid crystal 4-cyano-4’-pentylbiphenyl (5CB). The quantum dots serve as emitters feeding the optical modes of the photonic cavity. By changing temperature, the liquid crystal undergoes a phase transition from the isotropic to the nematic state, which can be used as an effective tuning mechanism of the photonic modes of the cavity. In the nematic state, the uniaxial electrical anisotropy of the liquid crystal molecules can be exploited for orienting the material in an electric field, thus externally controlling the birefringence of the material. Using this effect, an electric field induced tuning of the modes is achieved. Numerical simulations using the finite-differences time-domain (FDTD) technique employing an anisotropic dielectric medium allow to understand the alignment of the liquid crystal molecules on the surface of the microdisk resonator.


              Anticrossing of Whispering Gallery Modes in microdisk resonators embedded in an anisotropic environment

              S. Declair, C. Meier, T. Meier, J. Förstner, Photonics and Nanostructures - Fundamentals and Applications (2010), 8(4), pp. 273-277

              We numerically investigate the behavior of Whispering Gallery Modes (WGMs) in circularly shaped resonators like microdisks, with diameters in the range of optical vacuum wavelengths. The microdisk is embedded in an uniaxial anisotropic dielectric environment. By changing the optical anisotropy, one obtains spectral tunability of the optical modes. The degree of tunability strongly depends on the radial (azimuthal) mode order M (N). As the modes approach each other spectrally, anticrossing is observed, leading to a rearrangement of the optical states.


                Self-assembled quantum dots in a liquid-crystal-tunable microdisk resonator

                K.A. Piegdon, M. Offer, A. Lorke, M. Urbanski, A. Hoischen, H. Kitzerow, S. Declair, J. Förstner, T. Meier, D. Reuter, A.D. Wieck, C. Meier, Physica E: Low-dimensional Systems and Nanostructures (2010), 42(10), pp. 2552-2555

                GaAs-based semiconductor microdisks with high quality whispering gallery modes (Q44000) have been fabricated.A layer of self-organized InAs quantumdots (QDs) served as a light source to feed the optical modes at room temperature. In order to achieve frequency tuning of the optical modes, the microdisk devices have been immersed in 4 – cyano – 4´-pentylbiphenyl (5CB), a liquid crystal(LC) with a nematic phase below the clearing temperature of TC≈34°C .We have studied the device performance in the temperature rangeof T=20-50°C, in order to investigate the influence of the nematic–isotropic phase transition on the optical modes. Moreover,we havea pplied an AC electric field to the device,which leads in the nematic phase to a reorientation of the anisotropic dielectric tensor of the liquid crystal.This electrical anisotropy can be used to achieve electrical tunability of the optical modes.Using the finite-difference time domain (FDTD) technique with an anisotropic material model, we are able to describe the influence of the liquid crystal qualitatively.


                  Coupling Dynamics of Quantum Dots in a Liquid-Crystal-Tunable Microdisk Resonator

                  J. Förstner, C. Meier, K. Piegdon, S. Declair, A. Hoischen, M. Urbanski, T. Meier, H. Kitzerow, in: Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper NTuC2, 2009

                  We experimentally and theoretically investigate microdisk resonators with embedded quantum dots immersed in a liquid crystal in its nematic phase, showing the tunabililty of the photonic modes via external parameters like temperature or electric field.


                    Anticrossing of Whispering Gallery Modes in Microdisk Resonators Embedded in a Liquid Crystal

                    J. Förstner, S. Declair, C. Meier, T. Meier, in: AIP Conference Proceedings, AIP Conference Proceedings , 2009, pp. 60-62

                    We numerically investigate Whispering Gallery Modes (WGM) in a subwavelength microdisk resonator [1] embedded in an uniaxial anisotropic liquid crystal environment. It is shown that the WGMs have anticrossing behavior when modes of different radial mode order M or azimuthal order N approach each other spectrally.


                      Electromagnetic field structure and normal mode coupling in photonic crystal nanocavities

                      C. Dineen, J. Förstner, A. Zakharian, J. Moloney, S. Koch, Optics Express (2005), 13(13)

                      The electromagnetic field of a high-quality photonic crystal nanocavity is computed using the finite difference time domain method. It is shown that a separatrix occurs in the local energy flux discriminating between predominantly near and far field components. Placing a two-level atom into the cavity leads to characteristic field modifications and normalmode splitting in the transmission spectra.


                      Light Propagation and Many-Particle Effects in Semiconductor Nanostructures

                      J. Förstner, 2004

                      In dieser Arbeit wird eine Theorie vorgestellt, welche die quantenmechanische Vielteilchenphysik der Licht-Materie Wechselwirkung in Halbleiternanostrukturen beschreibt. Diese mikroskopische Beschreibung wird durch Kombination eines allgemeinen Dichtematrixansatzes mit speziellen Methoden zur Auswertung der Maxwellgleichungen wie der zeitaufgelösten Finite-Differenzen-Methode (FDTD) erreicht. Die Theorie wird auf verschiedene physikalische Situationen angewendet, wie z.B. Lichtausbreitung in Volumenhalbleitern, Interband- und Intersubbandübergänge in Quantenfilmstrukturen und optische Anregung von Quantenpunkten. Der Fokus liegt dabei auf der Beschreibung der linearen und nichtlinearen Antwort des Vielteilchensystems und seiner Ankopplung an das elektromagnetische Feld. In diesem Zusammenhang wird sowohl die Erzeugung als auch der Zerfall von optischen Anregungen untersucht, indem verschiedene Kopplungsmechanismen wie Elektron-Phonon-, Elektron-Photon- und Elektron-Elektron-Wechselwirkung berücksichtigt werden. Im Bereich der linearen Optik, also für Anregung mit geringer Intensität, ermöglicht die Theorie die Berechnung von Absorptionsspektren. Verschiedene Effekte in linearer Optik werden in dieser Arbeit untersucht und beschrieben: Linienaufspaltung durch Polaritonen im Volumenmaterial, Zunahme der Linienbreite bei Intersubbandübergängen verursacht durch Elektron-Elektron- und Elektron- Phonon-Streuung in einzelnen Quantenfilmen, Bildung einer optischen Bandlücke durch starke radiative Kopplung in Vielfilmstrukturen in Bragg-Geometrie, Phononenseitenbänder verursacht durch quantenkinetische Effekte in einzelnen Quantenpunkten und schliesslich Superradianz und Interferenzeffekte in Quantenpunktgittern. Bei nichtlinearer Anregung treten Dichte-Rabiflops als fundamentale Prozesse in allen betrachteten Systemen auf und können als kohärente Be- und Entvölkerung von quantenmechanischen Zuständen beobachtet werden. Der Einfluss von starker Lichtkopplung und verschiedenen Wechselwirkungen auf dynamische Größen wie die Besetzung wird untersucht. Bei nichtlinearer Propagation, bei der sich ein starker Lichtpuls über längere Strecken in einem System bewegt, wird selbstinduzierte Verstärkung der Transmission näher betrachtet. Des weiteren werden von der Coulombwechselwirkung verursachte nichtlineare Effekte wie exzitoninduziertes Dephasieren in Volumenmaterial und verschränkte Zustände in Quantenpunkten untersucht, die einen Zusammenbruch der Hartree-Fock- Näherung darstellen. Zusammenfassend werden in dieser Arbeit verschiedene lineare und nichtlineare optische Effekte in Halbleiternanostrukturen verschiedener Dimensionalität mit Hilfe einer allgemeinen Theorie, die einen Dichtematrixansatz mit den Maxwellschen Gleichungen kombiniert, untersucht.


                      Open list in Research Information System

                      Funding, co-operations

                      Contact

                      Dr. Viktor Myroshnychenko

                      Theoretical Electrical Engineering

                      Viktor Myroshnychenko
                      Phone:
                      +49 5251 60-3014
                      Fax:
                      +49 5251 60-3524
                      Office:
                      P 1.5.17.2

                      Office hours:

                      On Tuesdays: 13:00-14:00

                      Dr.-Ing. Denis Sievers

                      Theoretical Electrical Engineering

                      Denis Sievers
                      Phone:
                      +49 5251 60-3010
                      Fax:
                      +49 5251 60-3524
                      Office:
                      P1.5.01.3

                      Office hours:

                      Tuesdays form 1pm to 3pm
                      and by appointment

                      Head of the group

                      Prof. Dr. Jens Förstner

                      Theoretical Electrical Engineering

                      Jens Förstner
                      Phone:
                      +49 5251 60-3013
                      Fax:
                      +49 5251 60-3524
                      Office:
                      P1.5.01.1

                      Office hours:

                      on request (during lecture break)

                      The University for the Information Society