Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Info-Icon Diese Seite ist nicht in Deutsch verfügbar
Bildinformationen anzeigen
patentierter Schichtwellenleiter-Übergang Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Fachgebiet Theoretische Elektrotechnik (TET)
Prof. Dr. Jens Förstner

Publications

This is the list of all peer-reviewed conference proceedings, journal articles, and book contributions of the TET group and pre-TET publications by Jens Förstner.

If something needs correction, or if you would like a reprint, please let us know. You can apply more/different filters in the RIS database interface.


Liste im Research Information System öffnen

2023

A multi-mode super-fano mechanism for enhanced third harmonic generation in silicon metasurfaces

D. Hähnel, C. Golla, M. Albert, T. Zentgraf, V. Myroshnychenko, J. Förstner, C. Meier, Light: Science & Applications (2023), 12(1), pp. 97

We present strong enhancement of third harmonic generation in an amorphous silicon metasurface consisting of elliptical nano resonators. We show that this enhancement originates from a new type of multi-mode Fano mechanism. These ‘Super-Fano’ resonances are investigated numerically in great detail using full-wave simulations. The theoretically predicted behavior of the metasurface is experimentally verified by linear and nonlinear transmission spectroscopy. Moreover, quantitative nonlinear measurements are performed, in which an absolute conversion efficiency as high as ηmax ≈ 2.8 × 10−7 a peak power intensity of 1.2 GW cm−2 is found. Compared to an unpatterned silicon film of the same thickness amplification factors of up to ~900 are demonstrated. Our results pave the way to exploiting a strong Fano-type multi-mode coupling in metasurfaces for high THG in potential applications.

@article{Hähnel_Golla_Albert_Zentgraf_Myroshnychenko_Förstner_Meier_2023, title={A multi-mode super-fano mechanism for enhanced third harmonic generation in silicon metasurfaces}, volume={12}, DOI={https://doi.org/10.1038/s41377-023-01134-1}, number={1}, journal={Light: Science & Applications}, publisher={Springer Nature}, author={Hähnel, David and Golla, Christian and Albert, Maximilian and Zentgraf, Thomas and Myroshnychenko, Viktor and Förstner, Jens and Meier, Cedrik}, year={2023}, pages={97} }


On-demand indistinguishable and entangled photons at telecom frequencies using tailored cavity designs

D. Bauch, D. Siebert, K. Jöns, J. Förstner, S. Schumacher, 2023

The biexciton-exciton emission cascade commonly used in quantum-dot systems to generate polarization entanglement yields photons with intrinsically limited indistinguishability. In the present work we focus on the generation of pairs of photons with high degrees of polarization entanglement and simultaneously high indistinguishibility. We achieve this goal by selectively reducing the biexciton lifetime with an optical resonator. We demonstrate that a suitably tailored circular Bragg reflector fulfills the requirements of sufficient selective Purcell enhancement of biexciton emission paired with spectrally broad photon extraction and two-fold degenerate optical modes. Our in-depth theoretical study combines (i) the optimization of realistic photonic structures solving Maxwell's equations from which model parameters are extracted as input for (ii) microscopic simulations of quantum-dot cavity excitation dynamics with full access to photon properties. We report non-trivial dependencies on system parameters and use the predictive power of our combined theoretical approach to determine the optimal range of Purcell enhancement that maximizes indistinguishability and entanglement to near unity values in the telecom C-band at $1550\,\mathrm{nm}$.

@article{Bauch_Siebert_Jöns_Förstner_Schumacher_2023, title={On-demand indistinguishable and entangled photons at telecom frequencies using tailored cavity designs}, author={Bauch, David and Siebert, Dustin and Jöns, Klaus and Förstner, Jens and Schumacher, Stefan}, year={2023} }


How to suppress radiative losses in high-contrast integrated Bragg gratings

M. Hammer, H. Farheen, J. Förstner, Journal of the Optical Society of America B (2023), 40(4), pp. 862

High-contrast slab waveguide Bragg gratings with 1D periodicity are investigated. For specific oblique excitation by semi-guided waves at sufficiently high angles of incidence, the idealized structures do not exhibit any radiative losses, such that reflectance and transmittance for the single port mode add strictly up to one. We consider a series of symmetric, fully and partly etched finite gratings, for parameters found in integrated silicon photonics. These can act as spectral filters with a reasonably flattop response. Apodization can lead to more box shaped reflectance and transmittance spectra. Together with a narrowband Fabry–Perot filter, these configurations are characterized by reflection bands, or transmittance peaks, with widths that span three orders of magnitude.

@article{Hammer_Farheen_Förstner_2023, title={How to suppress radiative losses in high-contrast integrated Bragg gratings}, volume={40}, DOI={10.1364/josab.485725}, number={4}, journal={Journal of the Optical Society of America B}, publisher={Optica Publishing Group}, author={Hammer, Manfred and Farheen, Henna and Förstner, Jens}, year={2023}, pages={862} }


Optimized silicon antennas for optical phased arrays

H. Farheen, A. Strauch, J.C. Scheytt, V. Myroshnychenko, J. Förstner, in: Integrated Optics: Devices, Materials, and Technologies XXVII, SPIE, 2023, pp. 124241D

We demonstrate a large-scale two dimensional silicon-based optical phased array (OPA) composed of nanoantennas with circular gratings that are balanced in power and aligned in phase, required for producing desired radiation patterns in the far-field. The OPAs are numerically optimized to have an upward efficiency of up to 90%, targeting radiation concentration mainly in the field of view. We envision that our OPAs have the ability of generating complex holographic images, rendering them an attractive candidate for a wide range of applications like LiDAR sensors, optical trapping, optogenetic stimulation and augmented-reality displays.

@inproceedings{Farheen_Strauch_Scheytt_Myroshnychenko_Förstner_2023, title={Optimized silicon antennas for optical phased arrays}, DOI={10.1117/12.2658716}, booktitle={Integrated Optics: Devices, Materials, and Technologies XXVII}, publisher={SPIE}, author={Farheen, Henna and Strauch, Andreas and Scheytt, J. Christoph and Myroshnychenko, Viktor and Förstner, Jens}, editor={García-Blanco, Sonia M. and Cheben, Pavel}, year={2023}, pages={124241D} }


Tailoring the directive nature of optical waveguide antennas

H. Farheen, L. Yan, T. Leuteritz, S. Qiao, F. Spreyer, C. Schlickriede, V. Quiring, C. Eigner, C. Silberhorn, T. Zentgraf, S. Linden, V. Myroshnychenko, J. Förstner, in: Integrated Optics: Devices, Materials, and Technologies XXVII, SPIE, 2023, pp. 124241E

We demonstrate the numerical and experimental realization of optimized optical traveling-wave antennas made of low-loss dielectric materials. These antennas exhibit highly directive radiation patterns and our studies reveal that this nature comes from two dominant guided TE modes excited in the waveguide-like director of the antenna, in addition to the leaky modes. The optimized antennas possess a broadband nature and have a nearunity radiation efficiency at an operational wavelength of 780 nm. Compared to the previously studied plasmonic antennas for photon emission, our all-dielectric approach demonstrates a new class of highly directional, low-loss, and broadband optical antennas.

@inproceedings{Farheen_Yan_Leuteritz_Qiao_Spreyer_Schlickriede_Quiring_Eigner_Silberhorn_Zentgraf_et al._2023, title={Tailoring the directive nature of optical waveguide antennas}, DOI={10.1117/12.2658921}, booktitle={Integrated Optics: Devices, Materials, and Technologies XXVII}, publisher={SPIE}, author={Farheen, Henna and Yan, Lok-Yee and Leuteritz, Till and Qiao, Siqi and Spreyer, Florian and Schlickriede, Christian and Quiring, Viktor and Eigner, Christof and Silberhorn, Christine and Zentgraf, Thomas and et al.}, editor={García-Blanco, Sonia M. and Cheben, Pavel}, year={2023}, pages={124241E} }


Numerical study of light backscattering from layers of absorbing irregular particles larger than the wavelength

S. Alhaddad, J. Förstner, Y. Grynko, Journal of Quantitative Spectroscopy and Radiative Transfer (2023), 302, 108557

@article{Alhaddad_Förstner_Grynko_2023, title={Numerical study of light backscattering from layers of absorbing irregular particles larger than the wavelength}, volume={302}, DOI={10.1016/j.jqsrt.2023.108557}, number={108557}, journal={Journal of Quantitative Spectroscopy and Radiative Transfer}, publisher={Elsevier BV}, author={Alhaddad, Samer and Förstner, Jens and Grynko, Yevgen}, year={2023} }


2022

Small-scale online simulations in guided-wave photonics

M. Hammer, in: Integrated Optics: Devices, Materials, and Technologies XXVI, SPIE, 2022, pp. 1200414

Online solvers for a series of standard 1-D or 2-D problems in integrated optics will be discussed. Implemented on the basis of HTML/JavaScript/SVG with core routines compiled from well tested C++-sources, the quasi-analytical algorithms require a computational load that can be handled easily even by current mobile devices. So far the series covers the 1-D guided modes of dielectric multilayer slab waveguides and the oblique plane wave reflection from these, the modes of rectangular channel waveguides (in an approximation of effective indices), bend modes of curved multilayer slabs, whispering-gallery resonances (“Quasi-Normal-Modes”) supported by circular dielectric cavities, the hybrid modes of circular multi-step-index optical fibers, bound and leaky modes of 1-D complex multilayers, including plasmonic surface modes, and, with restrictions, quite general rectangular scattering problems in 2-D.

@inproceedings{Hammer_2022, title={Small-scale online simulations in guided-wave photonics}, DOI={10.1117/12.2612208}, booktitle={Integrated Optics: Devices, Materials, and Technologies XXVI}, publisher={SPIE}, author={Hammer, Manfred}, editor={García-Blanco, Sonia M. and Cheben, Pavel}, year={2022}, pages={1200414} }


Flexible source of correlated photons based on LNOI rib waveguides

L. Ebers, A. Ferreri, M. Hammer, M. Albert, C. Meier, J. Förstner, P.R. Sharapova, Journal of Physics: Photonics (2022), 4, pp. 025001

Lithium niobate on insulator (LNOI) has a great potential for photonic integrated circuits, providing substantial versatility in design of various integrated components. To properly use these components in the implementation of different quantum protocols, photons with different properties are required. In this paper, we theoretically demonstrate a flexible source of correlated photons built on the LNOI waveguide of a special geometry. This source is based on the parametric down-conversion (PDC) process, in which the signal and idler photons are generated at the telecom wavelength and have different spatial profiles and polarizations, but the same group velocities. Distinguishability in polarizations and spatial profiles facilitates the routing and manipulating individual photons, while the equality of their group velocities leads to the absence of temporal walk-off between photons. We show how the spectral properties of the generated photons and the number of their frequency modes can be controlled depending on the pump characteristics and the waveguide length. Finally, we discuss special regimes, in which narrowband light with strong frequency correlations and polarization-entangled Bell states are generated at the telecom wavelength.

@article{Ebers_Ferreri_Hammer_Albert_Meier_Förstner_Sharapova_2022, title={Flexible source of correlated photons based on LNOI rib waveguides}, volume={4}, DOI={10.1088/2515-7647/ac5a5b}, journal={Journal of Physics: Photonics}, publisher={IOP Publishing}, author={Ebers, Lena and Ferreri, Alessandro and Hammer, Manfred and Albert, Maximilian and Meier, Cedrik and Förstner, Jens and Sharapova, Polina R.}, year={2022}, pages={025001} }


Light Scattering by Large Densely Packed Clusters of Particles

Y. Grynko, Y. Shkuratov, S. Alhaddad, J. Förstner, in: Springer Series in Light Scattering - Volume 8: Light Polarization and Multiple Scattering in Turbid Media, Springer International Publishing, 2022

We review our results of numerical simulations of light scattering from different systems of densely packed irregular particles. We consider spherical clusters, thick layers and monolayers with realistic topologies and dimensions much larger than the wavelength of light. The maximum bulk packing density of clusters is 0.5. A numerically exact solution of the electromagnetic problem is obtained using the Discontinuous Galerkin Time Domain method and with application of high- performance computing. We show that high packing density causes light localization in such structures which makes an impact on the opposition phenomena: backscattering intensity surge and negative linear polarization feature. Diffuse multiple scattering is significantly reduced in the case of non-absorbing particles and near-field interaction results in a percolation-like light transport determined by the topology of the medium. With this the negative polarization feature caused by single scattering gets enhanced if compared to lower density samples. We also confirm coherent double scattering mechanism of negative polarization for light scattered from dense absorbing slabs. In this case convergent result for the scattering angle polarization dependency at backscattering can be obtained for a layer of just a few tens of particles if they are larger than the wavelength.

@inbook{Grynko_Shkuratov_Alhaddad_Förstner_2022, place={Cham}, series={Springer Series in Light Scattering}, title={Light Scattering by Large Densely Packed Clusters of Particles}, volume={8}, DOI={10.1007/978-3-031-10298-1_4}, booktitle={Springer Series in Light Scattering - Volume 8: Light Polarization and Multiple Scattering in Turbid Media}, publisher={Springer International Publishing}, author={Grynko, Yevgen and Shkuratov, Yuriy and Alhaddad, Samer and Förstner, Jens}, editor={Kokhanovsky, Alexander}, year={2022}, collection={Springer Series in Light Scattering} }


Asymmetric, non-uniform 3-dB directional coupler with 300-nm bandwidth and a small footprint

H. Nikbakht, M.T. Khoshmehr, B. van Someren, D. Teichrib, M. Hammer, J. Förstner, B.I. Akca, Optics Letters (2022), 48(2), pp. 207

Here we demonstrate a new, to the best of our knowledge, type of 3-dB coupler that has an ultra-broadband operational range from 1300 to 1600 nm with low fabrication sensitivity. The overall device size is 800 µm including in/out S-bend waveguides. The coupler is an asymmetric non-uniform directional coupler that consists of two tapered waveguides. One of the coupler arms is shifted by 100 µm in the propagation direction, which results in a more wavelength-insensitive 3-dB response compared to a standard (not shifted) coupler. Moreover, compared to a long adiabatic coupler, we achieved a similar wavelength response at a 16-times-smaller device length. The couplers were fabricated using the silicon nitride platform of Lionix International. We also experimentally demonstrated an optical switch that is made by using two of these couplers in a Mach–Zehnder interferometer configuration. According to experimental results, this optical switch exhibits –10 dB of extinction ratio over the 1500–1600 nm wavelength range. Our results indicate that this new type of coupler holds great promise for various applications, including optical imaging, telecommunications, and reconfigurable photonic processors where compact, fabrication-tolerant, and wavelength-insensitive couplers are essential.

@article{Nikbakht_Khoshmehr_van Someren_Teichrib_Hammer_Förstner_Akca_2022, title={Asymmetric, non-uniform 3-dB directional coupler with 300-nm bandwidth and a small footprint}, volume={48}, DOI={10.1364/ol.476537}, number={2}, journal={Optics Letters}, publisher={Optica Publishing Group}, author={Nikbakht, Hamed and Khoshmehr, Mohammad Talebi and van Someren, Bob and Teichrib, Dieter and Hammer, Manfred and Förstner, Jens and Akca, B. Imran}, year={2022}, pages={207} }


Light backscattering from numerical analog of planetary regoliths

Y. Grynko, Y. Shkuratov, S. Alhaddad, J. Förstner. Light backscattering from numerical analog of planetary regoliths. In: 16th Europlanet Science Congress 2022, Granada, Spain, 2022.

@inproceedings{Grynko_Shkuratov_Alhaddad_Förstner_2022, title={Light backscattering from numerical analog of planetary regoliths}, DOI={  10.5194/epsc2022-151}, publisher={Copernicus GmbH}, author={Grynko, Yevgen and Shkuratov, Yuriy and Alhaddad, Samer and Förstner, Jens}, year={2022} }


Negative polarization of light at backscattering from a numerical analog of planetary regoliths

Y. Grynko, Y. Shkuratov, S. Alhaddad, J. Förstner, Icarus (2022), 384, pp. 115099

We model negative polarization, which is observed for planetary regoliths at backscattering, solving a full wave problem of light scattering with a numerically exact Discontinuous Galerkin Time Domain (DGTD) method. Pieces of layers with the bulk packing density of particles close to 0.5 are used. The model particles are highly absorbing and have irregular shapes and sizes larger than the wavelength of light. This represents a realistic analog of low-albedo planetary regoliths. Our simulations confirm coherent backscattering mechanism of the origin of negative polarization. We show that angular profiles of polarization are stabilized if the number of particles in a layer piece becomes larger than ten. This allows application of our approach to the negative polarization modeling for planetary regoliths.

@article{Grynko_Shkuratov_Alhaddad_Förstner_2022, title={Negative polarization of light at backscattering from a numerical analog of planetary regoliths}, volume={384}, DOI={10.1016/j.icarus.2022.115099}, journal={Icarus}, publisher={Elsevier BV}, author={Grynko, Yevgen and Shkuratov, Yuriy and Alhaddad, Samer and Förstner, Jens}, year={2022}, pages={115099} }


Broadband optical Ta2O5 antennas for directional emission of light

H. Farheen, L. Yan, V. Quiring, C. Eigner, T. Zentgraf, S. Linden, J. Förstner, V. Myroshnychenko, Optics Express (2022), 30(11), pp. 19288

Highly directive antennas with the ability of shaping radiation patterns in desired directions are essential for efficient on-chip optical communication with reduced cross talk. In this paper, we design and optimize three distinct broadband traveling-wave tantalum pentoxide antennas exhibiting highly directional characteristics. Our antennas contain a director and reflector deposited on a glass substrate, which are excited by a dipole emitter placed in the feed gap between the two elements. Full-wave simulations in conjunction with global optimization provide structures with an enhanced linear directivity as high as 119 radiating in the substrate. The high directivity is a result of the interplay between two dominant TE modes and the leaky modes present in the antenna director. Furthermore, these low-loss dielectric antennas exhibit a near-unity radiation efficiency at the operational wavelength of 780 nm and maintain a broad bandwidth. Our numerical results are in good agreement with experimental measurements from the optimized antennas fabricated using a two-step electron-beam lithography, revealing the highly directive nature of our structures. We envision that our antenna designs can be conveniently adapted to other dielectric materials and prove instrumental for inter-chip optical communications and other on-chip applications.

@article{Farheen_Yan_Quiring_Eigner_Zentgraf_Linden_Förstner_Myroshnychenko_2022, title={Broadband optical Ta2O5 antennas for directional emission of light}, volume={30}, DOI={10.1364/oe.455815}, number={11}, journal={Optics Express}, publisher={Optica Publishing Group}, author={Farheen, Henna and Yan, Lok-Yee and Quiring, Viktor and Eigner, Christof and Zentgraf, Thomas and Linden, Stefan and Förstner, Jens and Myroshnychenko, Viktor}, year={2022}, pages={19288} }


Semi-guided waves in integrated optical waveguide structures

L. Ebers, 2022

In this work, the electromagnetic wave propagation in integrated optical waveguides is studied by using semi-analytical and numerical simulation methods. In the first part, 2-D high-index contrast Si/SiO2 dielectric slab waveguide configurations are investigated. The structures are excited with semi-guided waves at oblique angles of propagation. Due to this, power transfer to specific outgoing modes can be suppressed, resulting in completely lossless configurations. The excitation is further examined for incoming, laterally confined wave bundles of semi-guided waves to realize practically more relevant 3-D configurations. Additionally, a stepwise angular spectrum method in combination with full vectorial 2-D finite element solutions for subproblems of lower complexity to numerically simulate the wave propagation in full 3-D planar lens-like waveguides is presented. In the second part, the wave propagation in lithium niobate waveguide structures is examined, which are used for quantum optical effects. On the one hand, superconducting nanowires on titanium in-diffused lithium niobate waveguides with an additional tapered silicon layer are used for single photon detection. The wave propagation in these 3-D multiscale tapers is studied by introducing a unidirectional finite element modal matching method. On the other hand, lithium niobate rib waveguides on silicon dioxide platforms are analyzed, focusing on the nonlinear parametric down-conversion process used for the generation of entangled photons.

@book{Ebers_2022, title={Semi-guided waves in integrated optical waveguide structures}, DOI={10.17619/UNIPB/1-1288}, author={Ebers, Lena}, year={2022} }


Resonant evanescent excitation of OAM modes in a high-contrast circular step-index fiber

M. Hammer, L. Ebers, J. Förstner, in: Complex Light and Optical Forces XVI, SPIE, 2022, pp. 120170F

Resonant evanescent coupling can be utilized to selectively excite orbital angular momentum (OAM) modes of high angular order supported by a thin circular dielectric rod. Our 2.5-D hybrid-analytical coupled mode model combines the vectorial fields associated with the fundamental TE- and TM-modes of a standard silicon photonics slab waveguide, propagating at oblique angles with respect to the rod axis, and the hybrid modes supported by the rod. One observes an efficient resonant interaction in cases where the common axial wavenumber of the waves in the slab matches the propagation constant of one or more modes of the rod. For certain modes of high angular order, the incident wave is able to transfer its directionality to the field in the fiber, exciting effectively only one of a pair of degenerate OAM modes

@inproceedings{Hammer_Ebers_Förstner_2022, title={Resonant evanescent excitation of OAM modes in a high-contrast circular step-index fiber}, DOI={10.1117/12.2612179}, booktitle={Complex Light and Optical Forces XVI}, publisher={SPIE}, author={Hammer, Manfred and Ebers, Lena and Förstner, Jens}, editor={Andrews, David L. and Galvez, Enrique J. and Rubinsztein-Dunlop, Halina}, year={2022}, pages={120170F} }


Numerical analysis of the coherent mechanism producing negative polarization at backscattering from systems of absorbing particles

S. Alhaddad, Y. Grynko, H. Farheen, J. Förstner, Optics Letters (2022), 47(1), pp. 58

We study a double-scattering coherent mechanism of negative polarization (NP) near opposition that is observed for powder-like surfaces. The problem is solved numerically for absorbing structures with irregular constituents, cubes, spheres, and ellipsoids larger than the wavelength of incident light. Our simulations show that double scattering between two random irregular particles shows weak NP. Adding one more particle significantly increases the relative contribution of double scattering which enhances NP. Simulations with regular shapes and controlled geometric parameters show that the interference mechanism is sensitive to the geometry of the scattering system and can also result in no polarization or even strong enhancement of positive polarization at backscattering.

@article{Alhaddad_Grynko_Farheen_Förstner_2022, title={Numerical analysis of the coherent mechanism producing negative polarization at backscattering from systems of absorbing particles}, volume={47}, DOI={10.1364/ol.444953}, number={1}, journal={Optics Letters}, author={Alhaddad, Samer and Grynko, Yevgen and Farheen, Henna and Förstner, Jens}, year={2022}, pages={58} }


Optimization of optical waveguide antennas for directive emission of light

H. Farheen, T. Leuteritz, S. Linden, V. Myroshnychenko, J. Förstner, Journal of the Optical Society of America B (2022), 39(1), pp. 83

Optical traveling wave antennas offer unique opportunities to control and selectively guide light into a specific direction, which renders them excellent candidates for optical communication and sensing. These applications require state-of-the-art engineering to reach optimized functionalities such as high directivity and radiation efficiency, low sidelobe levels, broadband and tunable capabilities, and compact design. In this work, we report on the numerical optimization of the directivity of optical traveling wave antennas made from low-loss dielectric materials using full-wave numerical simulations in conjunction with the particle swarm optimization algorithm. The antennas are composed of a reflector and a director deposited on a glass substrate, and an emitter placed in the feed gap between them serves as an internal source of excitation. In particular, we analyze antennas with rectangular- and horn-shaped directors made of either hafnium dioxide or silicon. The optimized antennas produce highly directional emissions due to the presence of two dominant guided TE modes in the director in addition to leaky modes. These guided modes dominate the far-field emission pattern and govern the direction of the main lobe emission, which predominately originates from the end facet of the director. Our work also provides a comprehensive analysis of the modes, radiation patterns, parametric influences, and bandwidths of the antennas, which highlights their robust nature.

@article{Farheen_Leuteritz_Linden_Myroshnychenko_Förstner_2022, title={Optimization of optical waveguide antennas for directive emission of light}, volume={39}, DOI={10.1364/josab.438514}, number={1}, journal={Journal of the Optical Society of America B}, author={Farheen, Henna and Leuteritz, Till and Linden, Stefan and Myroshnychenko, Viktor and Förstner, Jens}, year={2022}, pages={83} }


2021

Ultrafast electric control of cavity mediated single-photon and photon-pair generation with semiconductor quantum dots

D. Bauch, D.F. Heinze, J. Förstner, K. Jöns, S. Schumacher, Physical Review B (2021), 104, pp. 085308

Employing the ultrafast control of electronic states of a semiconductor quantum dot in a cavity, we introduce an approach to achieve on-demand emission of single photons with almost perfect indistinguishability and photon pairs with near ideal entanglement. Our scheme is based on optical excitation off resonant to a cavity mode followed by ultrafast control of the electronic states using the time-dependent quantum-confined Stark effect, which then allows for cavity-resonant emission. Our theoretical analysis considers cavity-loss mechanisms, the Stark effect, and phonon-induced dephasing, allowing realistic predictions for finite temperatures.

@article{Bauch_Heinze_Förstner_Jöns_Schumacher_2021, title={Ultrafast electric control of cavity mediated single-photon and photon-pair generation with semiconductor quantum dots}, volume={104}, DOI={10.1103/physrevb.104.085308}, journal={Physical Review B}, author={Bauch, David and Heinze, Dirk Florian and Förstner, Jens and Jöns, Klaus and Schumacher, Stefan}, year={2021}, pages={085308} }


Optoelectronic sampling of ultrafast electric transients with single quantum dots

A. Widhalm, S. Krehs, D. Siebert, N.L. Sharma, T. Langer, B. Jonas, D. Reuter, A. Thiede, J. Förstner, A. Zrenner, Applied Physics Letters (2021), 119, pp. 181109

In our work, we have engineered low capacitance single quantum dot photodiodes as sensor devices for the optoelectronic sampling of ultrafast electric signals. By the Stark effect, a time-dependent electric signal is converted into a time-dependent shift of the transition energy. This shift is measured accurately by resonant ps laser spectroscopy with photocurrent detection. In our experiments, we sample the laser synchronous output pulse of an ultrafast CMOS circuit with high resolution. With our quantum dot sensor device, we were able to sample transients below 20 ps with a voltage resolution in the mV-range.

@article{Widhalm_Krehs_Siebert_Sharma_Langer_Jonas_Reuter_Thiede_Förstner_Zrenner_2021, title={Optoelectronic sampling of ultrafast electric transients with single quantum dots}, volume={119}, DOI={10.1063/5.0061358}, journal={Applied Physics Letters}, author={Widhalm, Alex and Krehs, Sebastian and Siebert, Dustin and Sharma, Nand Lal and Langer, Timo and Jonas, Björn and Reuter, Dirk and Thiede, Andreas and Förstner, Jens and Zrenner, Artur}, year={2021}, pages={181109} }


Configurable lossless broadband beam splitters for semi-guided waves in integrated silicon photonics

M. Hammer, L. Ebers, J. Förstner, OSA Continuum (2021), 4(12), pp. 3081

We show that narrow trenches in a high-contrast silicon-photonics slab can act as lossless power dividers for semi-guided waves. Reflectance and transmittance can be easily configured by selecting the trench width. At sufficiently high angles of incidence, the devices are lossless, apart from material attenuation and scattering due to surface roughness. We numerically simulate a series of devices within the full 0-to-1-range of splitting ratios, for semi-guided plane wave incidence as well as for excitation by focused Gaussian wave bundles. Straightforward cascading of the trenches leads to concepts for 1×M-power dividers and a polarization beam splitter.

@article{Hammer_Ebers_Förstner_2021, title={Configurable lossless broadband beam splitters for semi-guided waves in integrated silicon photonics}, volume={4}, DOI={10.1364/osac.437549}, number={12}, journal={OSA Continuum}, author={Hammer, Manfred and Ebers, Lena and Förstner, Jens}, year={2021}, pages={3081} }


Integrated superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides

J.P. Höpker, V.B. Verma, M. Protte, R. Ricken, V. Quiring, C. Eigner, L. Ebers, M. Hammer, J. Förstner, C. Silberhorn, R.P. Mirin, S. Woo Nam, T. Bartley, Journal of Physics: Photonics (2021), 3, pp. 034022

We demonstrate the integration of amorphous tungsten silicide superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides. We show proof-of-principle detection of evanescently coupled photons of 1550 nm wavelength using bidirectional waveguide coupling for two orthogonal polarization directions. We investigate the internal detection efficiency as well as detector absorption using coupling-independent characterization measurements. Furthermore, we describe strategies to improve the yield and efficiency of these devices.

@article{Höpker_Verma_Protte_Ricken_Quiring_Eigner_Ebers_Hammer_Förstner_Silberhorn_et al._2021, title={Integrated superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides}, volume={3}, DOI={10.1088/2515-7647/ac105b}, journal={Journal of Physics: Photonics}, author={Höpker, Jan Philipp and Verma, Varun B and Protte, Maximilian and Ricken, Raimund and Quiring, Viktor and Eigner, Christof and Ebers, Lena and Hammer, Manfred and Förstner, Jens and Silberhorn, Christine and et al.}, year={2021}, pages={034022} }


The HighPerMeshes framework for numerical algorithms on unstructured grids

S. Alhaddad, J. Förstner, S. Groth, D. Grünewald, Y. Grynko, F. Hannig, T. Kenter, F. Pfreundt, C. Plessl, M. Schotte, T. Steinke, J. Teich, M. Weiser, F. Wende, Concurrency and Computation: Practice and Experience (2021), pp. e6616

@article{Alhaddad_Förstner_Groth_Grünewald_Grynko_Hannig_Kenter_Pfreundt_Plessl_Schotte_et al._2021, title={The HighPerMeshes framework for numerical algorithms on unstructured grids}, DOI={10.1002/cpe.6616}, journal={Concurrency and Computation: Practice and Experience}, author={Alhaddad, Samer and Förstner, Jens and Groth, Stefan and Grünewald, Daniel and Grynko, Yevgen and Hannig, Frank and Kenter, Tobias and Pfreundt, Franz‐Josef and Plessl, Christian and Schotte, Merlind and et al.}, year={2021}, pages={e6616} }


Resonant evanescent excitation of guided waves with high-order optical angular momentum

M. Hammer, L. Ebers, J. Förstner, Journal of the Optical Society of America B (2021), 38(5), pp. 1717

Gaussian-beam-like bundles of semi-guided waves propagating in a dielectric slab can excite modes with high-order optical angular momentum supported by a circular fiber. We consider a multimode step-index fiber with a high-index coating, where the waves in the slab are evanescently coupled to the modes of the fiber. Conditions for effective resonant interaction are identified. Based on a hybrid analytical–numerical coupled mode model, our simulations predict that substantial fractions of the input power can be focused into waves with specific orbital angular momentum, of excellent purity, with a clear distinction between degenerate modes with opposite vorticity.

@article{Hammer_Ebers_Förstner_2021, title={Resonant evanescent excitation of guided waves with high-order optical angular momentum}, volume={38}, DOI={10.1364/josab.422731}, number={5}, journal={Journal of the Optical Society of America B}, author={Hammer, Manfred and Ebers, Lena and Förstner, Jens}, year={2021}, pages={1717} }


Dielectric travelling wave antennas for directional light emission

T. Leuteritz, H. Farheen, S. Qiao, F. Spreyer, C. Schlickriede, T. Zentgraf, V. Myroshnychenko, J. Förstner, S. Linden, Optics Express (2021), 29(10), 14694

We present a combined experimental and numerical study of the far-field emission properties of optical travelling wave antennas made from low-loss dielectric materials. The antennas considered here are composed of two simple building blocks, a director and a reflector, deposited on a glass substrate. Colloidal quantum dots placed in the feed gap between the two elements serve as internal light source. The emission profile of the antenna is mainly formed by the director while the reflector suppresses backward emission. Systematic studies of the director dimensions as well as variation of antenna material show that the effective refractive index of the director primarily governs the far-field emission pattern. Below cut off, i.e., if the director’s effective refractive index is smaller than the refractive index of the substrate, the main lobe results from leaky wave emission along the director. In contrast, if the director supports a guided mode, the emission predominately originates from the end facet of the director.

@article{Leuteritz_Farheen_Qiao_Spreyer_Schlickriede_Zentgraf_Myroshnychenko_Förstner_Linden_2021, title={Dielectric travelling wave antennas for directional light emission}, volume={29}, DOI={10.1364/oe.422984}, number={1014694}, journal={Optics Express}, author={Leuteritz, T. and Farheen, H. and Qiao, S. and Spreyer, F. and Schlickriede, Christian and Zentgraf, Thomas and Myroshnychenko, Viktor and Förstner, Jens and Linden, S.}, year={2021} }


HighPerMeshes – A Domain-Specific Language for Numerical Algorithms on Unstructured Grids

S. Alhaddad, J. Förstner, S. Groth, D. Grünewald, Y. Grynko, F. Hannig, T. Kenter, F. Pfreundt, C. Plessl, M. Schotte, T. Steinke, J. Teich, M. Weiser, F. Wende, in: Euro-Par 2020: Parallel Processing Workshops, 2021

Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPerMeshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell’s equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster.

@inbook{Alhaddad_Förstner_Groth_Grünewald_Grynko_Hannig_Kenter_Pfreundt_Plessl_Schotte_et al._2021, place={Cham}, title={HighPerMeshes – A Domain-Specific Language for Numerical Algorithms on Unstructured Grids}, DOI={10.1007/978-3-030-71593-9_15}, booktitle={Euro-Par 2020: Parallel Processing Workshops}, author={Alhaddad, Samer and Förstner, Jens and Groth, Stefan and Grünewald, Daniel and Grynko, Yevgen and Hannig, Frank and Kenter, Tobias and Pfreundt, Franz-Josef and Plessl, Christian and Schotte, Merlind and et al.}, year={2021} }


2020

Ultrafast electric control of a single QD exciton

J. Förstner, A. Widhalm, A. Mukherjee, S. Krehs, B. Jonas, K. Spychala, J. Förstner, A. Thiede, D. Reuter, A. Zrenner. Ultrafast electric control of a single QD exciton. In: , 2020.

@inproceedings{Förstner_Widhalm_Mukherjee_Krehs_Jonas_Spychala_Förstner_Thiede_Reuter_Zrenner_2020, place={Munich/Germany}, title={Ultrafast electric control of a single QD exciton}, booktitle={11th International Conference on Quantum Dots}, author={Förstner, Jens and Widhalm, A. and Mukherjee, A. and Krehs, S. and Jonas, B. and Spychala, K. and Förstner, Jens and Thiede, Andreas and Reuter, Dirk and Zrenner, Artur}, year={2020} }


Electrically controlled rapid adiabatic passage in a single quantum dot

A. Mukherjee, A. Widhalm, D. Siebert, S. Krehs, N. Sharma, A. Thiede, D. Reuter, J. Förstner, A. Zrenner, Applied Physics Letters (2020), 116, pp. 251103

@article{Mukherjee_Widhalm_Siebert_Krehs_Sharma_Thiede_Reuter_Förstner_Zrenner_2020, title={Electrically controlled rapid adiabatic passage in a single quantum dot}, volume={116}, DOI={10.1063/5.0012257}, journal={Applied Physics Letters}, author={Mukherjee, Amlan and Widhalm, Alex and Siebert, Dustin and Krehs, Sebastian and Sharma, Nandlal and Thiede, Andreas and Reuter, Dirk and Förstner, Jens and Zrenner, Artur}, year={2020}, pages={251103} }


Towards Semiconductor-Superconductor-Crystal Hybrid Integration for Quantum Photonics

M. Protte, L. Ebers, M. Hammer, J.P. Höpker, M. Albert, V. Quiring, C. Meier, J. Förstner, C. Silberhorn, T. Bartley, in: OSA Quantum 2.0 Conference, 2020

We fabricate silicon tapers to increase the mode overlap of superconducting detectors on Ti:LiNbO3 waveguides. Mode images show a reduction in mode size from 6 µm to 2 µm FWHM, agreeing with beam propagation simulations.

@inproceedings{Protte_Ebers_Hammer_Höpker_Albert_Quiring_Meier_Förstner_Silberhorn_Bartley_2020, title={Towards Semiconductor-Superconductor-Crystal Hybrid Integration for Quantum Photonics}, DOI={10.1364/quantum.2020.qth7a.8}, number={QTh7A.8}, booktitle={OSA Quantum 2.0 Conference}, author={Protte, Maximilian and Ebers, Lena and Hammer, Manfred and Höpker, Jan Philipp and Albert, Maximilian and Quiring, Viktor and Meier, Cedrik and Förstner, Jens and Silberhorn, Christine and Bartley, Tim}, year={2020} }


Light diffraction in slab waveguide lenses simulated with the stepwise angular spectrum method

L. Ebers, M. Hammer, J. Förstner, Optics Express (2020), 28(24), pp. 36361

A stepwise angular spectrum method (SASM) for curved interfaces is presented to calculate the wave propagation in planar lens-like integrated optical structures based on photonic slab waveguides. The method is derived and illustrated for an effective 2D setup first and then for 3D slab waveguide lenses. We employ slab waveguides of different thicknesses connected by curved surfaces to realize a lens-like structure. To simulate the wave propagation in 3D including reflection and scattering losses, the stepwise angular spectrum method is combined with full vectorial finite element computations for subproblems with lower complexity. Our SASM results show excellent agreement with rigorous numerical simulations of the full structures with a substantially lower computational effort and can be utilized for the simulation-based design and optimization of complex and large scale setups.

@article{Ebers_Hammer_Förstner_2020, title={Light diffraction in slab waveguide lenses simulated with the stepwise angular spectrum method}, volume={28}, DOI={10.1364/oe.409612}, number={24}, journal={Optics Express}, author={Ebers, Lena and Hammer, Manfred and Förstner, Jens}, year={2020}, pages={36361} }


Nonlinear dielectric properties of random paraelectric-dielectric composites

V. Myroshnychenko, S. Smirnov, P.M.M. Jose, C. Brosseau, J. Förstner, Acta Materialia (2020), 203, pp. 116432

The challenge of designing new tunable nonlinear dielectric materials with tailored properties has attracted an increasing amount of interest recently. Herein, we study the effective nonlinear dielectric response of a stochastic paraelectric-dielectric composite consisting of equilibrium distributions of circular and partially penetrable disks (or parallel, infinitely long, identical, partially penetrable, circular cylinders) of a dielectric phase randomly dispersed in a continuous matrix of a paraelectric phase. The random microstructures were generated using the Metropolis Monte Carlo algorithm. The evaluation of the effective permittivity and tunability were carried out by employing either a Landau thermodynamic model or its Johnson’s approximation to describe the field-dependent permittivity of the paraelectric phase and solving continuum-electrostatics equations using finite element calculations. We reveal that the percolation threshold in this composite governs the critical behavior of the effective permittivity and tunability. For microstructures below the percolation threshold, our simulations demonstrate a strong nonlinear behaviour of the field-dependent effective permittivity and very high tunability that increases as a function of dielectric phase concentration. Above the percolation threshold, the effective permittivity shows the tendency to linearization and the tunability dramatically drops down. The highly reduced permittivity and extraordinarily high tunability are obtained for the composites with dielectric impenetrable disks at high concentrations, in which the triggering of the percolation transition is avoided. The reported results cast light on distinct nonlinear behaviour of 2D and 3D stochastic composites and can guide the design of novel composites with the controlled morphology and tailored permittivity and tunability.

@article{Myroshnychenko_Smirnov_Jose_Brosseau_Förstner_2020, title={Nonlinear dielectric properties of random paraelectric-dielectric composites}, volume={203}, DOI={10.1016/j.actamat.2020.10.051}, journal={Acta Materialia}, author={Myroshnychenko, Viktor and Smirnov, Stanislav and Jose, Pious Mathews Mulavarickal and Brosseau, Christian and Förstner, Jens}, year={2020}, pages={116432} }


Hybrid coupled mode modelling of the evanescent excitation of a dielectric tube by semi-guided waves at oblique angles

M. Hammer, L. Ebers, J. Förstner, Optical and Quantum Electronics (2020), 52, 472

A dielectric step-index optical fiber with tube-like profile is considered, being positioned with a small gap on top of a dielectric slab waveguide. We propose a 2.5-D hybrid analytical/numerical coupled mode model for the evanescent excitation of the tube through semi-guided waves propagating in the slab at oblique angles. The model combines the directional polarized modes supported by the slab with analytic solutions for the TE-, TM-, and orbital-angular-momentum (OAM) modes of the tube-shaped fiber. Implementational details of the scheme are discussed, complemented by finite-element simulations for verification purposes. Our results include configurations with resonant in-fiber excitation of OAM modes with large orbital angular momentum and strong field enhancement.

@article{Hammer_Ebers_Förstner_2020, title={Hybrid coupled mode modelling of the evanescent excitation of a dielectric tube by semi-guided waves at oblique angles}, volume={52}, DOI={10.1007/s11082-020-02595-z}, number={472}, journal={Optical and Quantum Electronics}, author={Hammer, Manfred and Ebers, Lena and Förstner, Jens}, year={2020} }


Light backscattering from large clusters of densely packed irregular particles

Y. Grynko, Y. Shkuratov, J. Förstner, Journal of Quantitative Spectroscopy and Radiative Transfer (2020), 255, pp. 107234

We numerically simulate multiple light scattering in discrete disordered media represented by large clusters of irregular non-absorbing particles. The packing density of clusters is 0.5. With such conditions diffuse scattering is significantly reduced and light transport follows propagation channels that are determined by the particle size and topology of the medium. This kind of localization produces coherent backscattering intensity surge and enhanced negative polarization branch if compared to lower density samples.

@article{Grynko_Shkuratov_Förstner_2020, title={Light backscattering from large clusters of densely packed irregular particles}, volume={255}, DOI={10.1016/j.jqsrt.2020.107234}, journal={Journal of Quantitative Spectroscopy and Radiative Transfer}, author={Grynko, Yevgen and Shkuratov, Yuriy and Förstner, Jens}, year={2020}, pages={107234} }


2019

Oblique evanescent excitation of a dielectric strip: A model resonator with an open optical cavity of unlimited Q

M. Hammer, L. Ebers, J. Förstner, Optics Express (2019), 27(7), pp. 8

A rectangular dielectric strip at some distance above an optical slab waveguide is being considered, for evanescent excitation of the strip through the semi-guided waves supported by the slab, at specific oblique angles. The 2.5-D configuration shows resonant transmission properties with respect to variations of the angle of incidence, or of the excitation frequency, respectively. The strength of the interaction can be controlled by the gap between strip and slab. For increasing distance, our simulations predict resonant states with unit extremal reflectance of an angular or spectral width that tends to zero, i.e. resonances with a Q-factor that tends to infinity, while the resonance position approaches the level of the guided mode of the strip. This exceptionally simple system realizes what might be termed a “bound state coupled to the continuum”.

@article{Hammer_Ebers_Förstner_2019, title={Oblique evanescent excitation of a dielectric strip: A model resonator with an open optical cavity of unlimited Q}, volume={27}, DOI={10.1364/OE.27.009313}, number={7}, journal={Optics Express}, author={Hammer, Manfred and Ebers, Lena and Förstner, Jens}, year={2019}, pages={8} }


Optical transition between two optical waveguides layer and method for transmitting light

M. Hammer, J. Förstner, L. Ebers. Optical transition between two optical waveguides layer and method for transmitting light, Patent DE102018108110B3. 2019.

Die Erfindung betrifft einen optischen Übergang zwischen zwei optischen Schichtwellenleitern. Dazu ist eine Anordnung vorgesehen aus einem ersten optischen Schichtwellenleiter (2) und einem zweiten optischen Schichtwellenleiter (3), wobei der erste optische Schichtwellenleiter (2) und der zweite optische Schichtwellenleiter (3) voneinander verschiedene über ihre jeweilige Länge konstante Dicken (d, r) aufweisen, der erste optische Schichtwellenleiter (2) mit dem zweiten optischen Schichtwellenleiter (3) mittels einer optischen Schichtwellenleiterstruktur (4) verbunden ist, die über ihre gesamte Länge (w) eine Dicke (h) aufweist, die zwischen der Dicke (d) des ersten optischen Schichtwellenleiters (2) und der Dicke (r) des zweiten optischen Schichtwellenleiters (3) liegt. Erfindungsgemäß ist die Dicke (h) der optischen Schichtwellenleiterstruktur (4) über die gesamte Länge (w) der optischen Schichtwellenleiterstruktur (4) konstant. Damit wird eine Möglichkeit für einen effizienten und mit geringen Verlusten behafteten Übergang zwischen zwei optischen Schichtwellenleitern mit unterschiedlicher Dicke bereitgestellt.

@article{Hammer_Förstner_Ebers_2019, title={Optical transition between two optical waveguides layer and method for transmitting light}, author={Hammer, Manfred and Förstner, Jens and Ebers, Lena}, year={2019} }


Method of superposing a multiple driven magnetic field to minimize stray fields around the receiver for inductive wireless power transmission

S. Lange, M. Büker, D. Sievers, C. Hedayat, J. Förstner, U. Hilleringmann, T. Otto, in: Smart Systems Integration; 13th International Conference and Exhibition on Integration Issues of Miniaturized Systems, VDE VERLAG GMBH, 2019, pp. 1-4

This paper presents a new methodology by using a multiple coil array for energy transmission. The complex current strengths of the transmitting coil array are calculated by having the knowledge about of the mutual inductances and the symmetries of the transmitting coil array, so that its resulting magnetic field mainly penetrates only the receiving coil and is strongly attenuated outside. This method is used for an optimized wireless energy transmission but can also be implemented for other inductive applications.

@inproceedings{Lange_Büker_Sievers_Hedayat_Förstner_Hilleringmann_Otto_2019, place={Berlin · Offenbach}, title={Method of superposing a multiple driven magnetic field to minimize stray fields around the receiver for inductive wireless power transmission}, booktitle={Smart Systems Integration; 13th International Conference and Exhibition on Integration Issues of Miniaturized Systems}, publisher={VDE VERLAG GMBH}, author={Lange, Sven and Büker, Maik-Julian and Sievers, Denis and Hedayat, Christian and Förstner, Jens and Hilleringmann, Ulrich and Otto, Thomas}, year={2019}, pages={1–4} }


Light scattering by 3-Foci convex and concave particles in the geometrical optics approximation

D. Stankevich, L. Hradyska, Y. Shkuratov, Y. Grynko, G. Videen, J. Förstner, Journal of Quantitative Spectroscopy and Radiative Transfer (2019), 231, pp. 49

We consider light scattering from a new type of model particle whose shape is represented in the form of a generalized ellipsoid having N foci, where N is greater than two. Such particles can be convex as well as concave. We use the geometrical optics approximation to study the light scattering from 3-foci particles. Non-zero elements of the scattering matrix are calculated for ensembles of randomly oriented independent transparent particles, m = n + i0. Several internal reflection orders are considered separately. It was found that the transmission-transmission (TT) and transmission-reflectance-transmission (TRT) components dominate in the formation of intensity of scattered light at large and small phase angles, respectively. We found a significant role of the total internal reflections of the TRT in the middle portion of the phase angle range. The main factors in the formation of positive linear polarization are the R and TRT component. The TT component is responsible for the formation of negative polarization branch at large phase angles.

@article{Stankevich_Hradyska_Shkuratov_Grynko_Videen_Förstner_2019, title={Light scattering by 3-Foci convex and concave particles in the geometrical optics approximation}, volume={231}, DOI={10.1016/j.jqsrt.2019.04.016}, journal={Journal of Quantitative Spectroscopy and Radiative Transfer}, author={Stankevich, Dmitriy and Hradyska, Larissa and Shkuratov, Yuriy and Grynko, Yevgen and Videen, Gorden and Förstner, Jens}, year={2019}, pages={49} }


Coupled microstrip-cavities under oblique incidence of semi-guided waves: a lossless integrated optical add-drop filter

L. Ebers, M. Hammer, M.B. Berkemeier, A. Menzel, J. Förstner, OSA Continuum (2019), 2, pp. 3288

We investigate optical microresonators consisting of either one or two coupled rectangular strips between upper and lower slab waveguides. The cavities are evanescently excited under oblique angles by thin-film guided, in-plane unguided waves supported by one of the slab waveguides. Beyond a specific incidence angle, losses are fully suppressed. The interaction between the guided mode of the cavity-strip and the incoming slab modes leads to resonant behavior for specific incidence angles and gaps. For a single cavity, at resonance, the input power is equally split among each of the four output ports, while for two cavities an add-drop filter can be realized that, at resonance, routes the incoming power completely to the forward drop waveguide via the cavity. For both applications, the strength of the interaction is controlled by the gaps between cavities and waveguides.

@article{Ebers_Hammer_Berkemeier_Menzel_Förstner_2019, title={Coupled microstrip-cavities under oblique incidence of semi-guided waves: a lossless integrated optical add-drop filter}, volume={2}, DOI={10.1364/osac.2.003288}, journal={OSA Continuum}, author={Ebers, Lena and Hammer, Manfred and Berkemeier, Manuel B. and Menzel, Alexander and Förstner, Jens}, year={2019}, pages={3288} }


Oblique quasi-lossless excitation of a thin silicon slab waveguide: a guided-wave variant of an anti-reflection coating

M. Hammer, L. Ebers, J. Förstner, Journal of the Optical Society of America B (2019), 36, pp. 2395

@article{Hammer_Ebers_Förstner_2019, title={Oblique quasi-lossless excitation of a thin silicon slab waveguide: a guided-wave variant of an anti-reflection coating}, volume={36}, DOI={10.1364/josab.36.002395}, journal={Journal of the Optical Society of America B}, author={Hammer, Manfred and Ebers, Lena and Förstner, Jens}, year={2019}, pages={2395} }


2018

Ultrafast electric phase control of a single exciton qubit

A. Widhalm, A. Mukherjee, S. Krehs, N. Sharma, P. Kölling, A. Thiede, D. Reuter, J. Förstner, A. Zrenner, Applied Physics Letters (2018), 112(11), pp. 111105

We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse p/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3p within 100 ps which is below the dephasing time of the quantum dot exciton.

@article{Widhalm_Mukherjee_Krehs_Sharma_Kölling_Thiede_Reuter_Förstner_Zrenner_2018, title={Ultrafast electric phase control of a single exciton qubit}, volume={112}, DOI={10.1063/1.5020364}, number={11}, journal={Applied Physics Letters}, author={Widhalm, Alex and Mukherjee, Amlan and Krehs, Sebastian and Sharma, Nandlal and Kölling, Peter and Thiede, Andreas and Reuter, Dirk and Förstner, Jens and Zrenner, Artur}, year={2018}, pages={111105} }


Simulation leitungsgeführter Störspannungen von DC-DC-Wandlern

T. Baumgarten, P. Scholz, D. Sievers, J. Förstner, in: Elektromagnetische Verträglichkeit - Internationale Fachmesse und Kongress 2018, 2018, pp. 47

In diesem Beitrag werden simulatorische und messtechnische EMV-Untersuchungen von Gleichspannungswandlern vorgestellt. Der Fokus liegt auf leitungsgeführten Störspannungen, ihre Abhängigkeit vom Schaltungslayout und ihre Unterdrückung durch Filterung. Der Simulationsprozess besteht aus kombinierten Feld- und Netzwerksimulationen. Zur Bewertung der Simulationsresultate werden zwei Prototypen gezeigt, die gute und schlechte EMV-Eigenschaften aufweisen. Bei der Beurteilung der Resultate wird insbesondere Wert auf die Untersuchung gelegt, inwieweit einfache Schaltungssimulationen ausreichen, um leitungsgeführte Störspannungen korrekt vorherzusagen und wann aufwändigere Feldsimulationen notwendig sind.

@inproceedings{Baumgarten_Scholz_Sievers_Förstner_2018, title={Simulation leitungsgeführter Störspannungen von DC-DC-Wandlern}, booktitle={Elektromagnetische Verträglichkeit - Internationale Fachmesse und Kongress 2018}, author={Baumgarten, Tim and Scholz, Peter and Sievers, Denis and Förstner, Jens}, editor={Garbe, HeynoEditor}, year={2018}, pages={47} }


Polarization Conversion Effect in Biological and Synthetic Photonic Diamond Structures

X. Wu, F.L. Rodríguez-Gallegos, M. Heep, B. Schwind, G. Li, H. Fabritius, G. von Freymann, J. Förstner, Advanced Optical Materials (2018), 6(24), pp. 1800635

Polarization of light is essential for some living organisms and many optical applications. Here, an orientation dependent polarization conversion effect is reported for light reflected from diamond‐structure‐based photonic crystals (D‐structure) inside the scales of a beetle, the weevil Entimus imperialis. When linearly polarized light propagates along its 〈100〉 directions, the D‐structure behaves analogous to a half‐wave plate in reflection but based on a different mechanism. The D‐structure rotates the polarization direction of linearly polarized light, and reflects circularly polarized light of both handednesses without changing it. This polarization effect is different from circular dichroism occurring in chiral biological photonic structures discovered before. The structural origin of this effect is symmetry breaking inside D‐structure's unit cell. This finding demonstrates that natural photonic structures can exploit multiple functionalities inherent to the design principles of their structural organization. Aiming at transferring the inherent polarization effect of the biological D‐structure to technically realizable materials, three simplified biomimetic structural models are derived and it is theoretically demonstrated that they retain the effect. Out of these structures, functioning woodpile structure prototypes are fabricated.

@article{Wu_Rodríguez-Gallegos_Heep_Schwind_Li_Fabritius_von Freymann_Förstner_2018, title={Polarization Conversion Effect in Biological and Synthetic Photonic Diamond Structures}, volume={6}, DOI={10.1002/adom.201800635}, number={24}, journal={Advanced Optical Materials}, publisher={Wiley}, author={Wu, Xia and Rodríguez-Gallegos, Fernando L. and Heep, Marie-Christin and Schwind, Bertram and Li, Guixin and Fabritius, Helge-Otto and von Freymann, Georg and Förstner, Jens}, year={2018}, pages={1800635} }


Application of the Discontinuous Galerkin Time Domain Method in Nonlinear Nanoplasmonics

Y. Grynko, J. Förstner, in: 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), IEEE, 2018

@inproceedings{Grynko_Förstner_2018, title={Application of the Discontinuous Galerkin Time Domain Method in Nonlinear Nanoplasmonics}, DOI={10.1109/mmet.2018.8460261}, booktitle={2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)}, publisher={IEEE}, author={Grynko, Yevgen and Förstner, Jens}, year={2018} }


Oblique Semi-Guided Waves: 2-D Integrated Photonics with Negative Effective Permittivity

M. Hammer, L. Ebers, A. Hildebrandt, S. Alhaddad, J. Förstner, in: 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), IEEE, 2018

Semi-guided waves confined in dielectric slab waveguides are being considered for oblique angles of propagation. If the waves encounter a linear discontinuity of (mostly) arbitrary shape and extension, a variant of Snell's law applies, separately for each pair of incoming and outgoing modes. Depending on the effective indices involved, and on the angle of incidence, power transfer to specific outgoing waves can be allowed or forbidden. In particular, critical angles of incidence can be identified, beyond which any power transfer to non-guided waves is forbidden, i.e. all radiative losses are suppressed. In that case the input power is carried away from the discontinuity exclusively by reflected semi-guided waves in the input slab, or by semi-guided waves that are transmitted into other outgoing slab waveguides. Vectorial equations on a 2-D cross sectional domain apply. These are formally identical to the equations that govern the eigenmodes of 3-D channel waveguides. Here, however, these need to be solved not as an eigenvalue problem, but as an inhomogeneous problem with a right-hand-side that is given by the incoming semi-guided wave, and subject to transparent boundary conditions. The equations resemble a standard 2-D Helmholtz problem, with an effective permittivity in place of the actual relative permittivity. Depending on the properties of the incoming wave, including the angle of incidence, this effective permittivity can become locally negative, causing the suppression of propagating outgoing waves. A series of high-contrast example configurations are discussed, where these effects lead to - in some respects - quite surprising transmission characteristics.

@inproceedings{Hammer_Ebers_Hildebrandt_Alhaddad_Förstner_2018, title={Oblique Semi-Guided Waves: 2-D Integrated Photonics with Negative Effective Permittivity}, DOI={10.1109/mmet.2018.8460455}, booktitle={2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)}, publisher={IEEE}, author={Hammer, Manfred and Ebers, Lena and Hildebrandt, Andre and Alhaddad, Samer and Förstner, Jens}, year={2018} }


Intensity surge and negative polarization of light from compact irregular particles

Y. Grynko, Y. Shkuratov, J. Förstner, Optics Letters (2018), 43(15), pp. 3562

We study the dependence of the intensity and linear polarization of light scattered by isolated particles with the compact irregular shape on their size using the discontinuous Galerkin time domain numerical method. The size parameter of particles varies in the range of X = 10 to 150, and the complex refractive index is m = 1.5 + 0i. Our results show that the backscattering negative polarization branch weakens monotonously, but does not disappear at large sizes, up to the geometrical optics regime, and can be simulated without accounting for wave effects. The intensity backscattering surge becomes narrower with increasing particle size. For X = 150, the surge width is several degrees.

@article{Grynko_Shkuratov_Förstner_2018, title={Intensity surge and negative polarization of light from compact irregular particles}, volume={43}, DOI={10.1364/ol.43.003562}, number={15}, journal={Optics Letters}, publisher={The Optical Society}, author={Grynko, Yevgen and Shkuratov, Yuriy and Förstner, Jens}, year={2018}, pages={3562} }


Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution

V. Myroshnychenko, N. Nishio, F.J. García de Abajo, J. Förstner, N. Yamamoto, ACS Nano (2018), 12(8), pp. 8436-8446

Metal nanoparticles host localized plasmon excitations that allow the manipulation of optical fields at the nanoscale. Despite the availability of several techniques for imaging plasmons, direct access into the symmetries of these excitations remains elusive, thus hindering progress in the development of applications. Here, we present a combination of angle-, polarization-, and space-resolved cathodoluminescence spectroscopy methods to selectively access the symmetry and degeneracy of plasmonic states in lithographically fabricated gold nanoprisms. We experimentally reveal and spatially map degenerate states of multipole plasmon modes with nanometer spatial resolution and further provide recipes for resolving optically dark and out-of-plane modes. Full-wave simulations in conjunction with a simple tight-binding model explain the complex plasmon structure in these particles and reveal intriguing mode-symmetry phenomena. Our approach introduces systematics for a comprehensive symmetry characterization of plasmonic states in high-symmetry nanostructures.

@article{Myroshnychenko_Nishio_García de Abajo_Förstner_Yamamoto_2018, title={Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution}, volume={12}, DOI={10.1021/acsnano.8b03926}, number={8}, journal={ACS Nano}, publisher={American Chemical Society (ACS)}, author={Myroshnychenko, Viktor and Nishio, Natsuki and García de Abajo, F. Javier and Förstner, Jens and Yamamoto, Naoki}, year={2018}, pages={8436–8446} }


Oblique incidence of semi-guided planar waves on slab waveguide steps: effects of rounded edges

L. Ebers, M. Hammer, J. Förstner, Optics Express (2018), 26(14), pp. 18621-18632

Oblique propagation of semi-guided waves across slab waveguide structures with bent corners is investigated. A critical angle can be defined beyond which all radiation losses are suppressed. Additionally an increase of the curvature radius of the bends also leads to low-loss configurations for incidence angles below that critical angle. A combination of two bent corner systems represents a step-like structure, behaving like a Fabry-Perot interferometer, with two partial reflectors separated by the vertical height between the horizontal slabs. We numerically analyse typical high-index-contrast Si/SiO2 structures for their reflectance and transmittance properties. When increasing the curvature radius the resonant effect becomes less relevant such that full transmittance is reached with less critical conditions on the vertical distance or the incidence angle. For practical interest 3-D problems are considered, where the structures are excited by the fundamental mode of a wide, shallow rib waveguide. High transmittance levels can be observed also for these 3-D configurations depending on the width of the rib.

@article{Ebers_Hammer_Förstner_2018, title={Oblique incidence of semi-guided planar waves on slab waveguide steps: effects of rounded edges}, volume={26}, DOI={10.1364/OE.26.018621}, number={14}, journal={Optics Express}, publisher={OSA Publishing}, author={Ebers, Lena and Hammer, Manfred and Förstner, Jens}, year={2018}, pages={18621–18632} }


Solving Maxwell's Equations with Modern C++ and SYCL: A Case Study

A. Afzal, C. Schmitt, S. Alhaddad, Y. Grynko, J. Teich, J. Förstner, F. Hannig, in: Proceedings of the 29th Annual IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2018, pp. 49-56

In scientific computing, unstructured meshes are a crucial foundation for the simulation of real-world physical phenomena. Compared to regular grids, they allow resembling the computational domain with a much higher accuracy, which in turn leads to more efficient computations.<br />There exists a wealth of supporting libraries and frameworks that aid programmers with the implementation of applications working on such grids, each built on top of existing parallelization technologies. However, many approaches require the programmer to introduce a different programming paradigm into their application or provide different variants of the code. SYCL is a new programming standard providing a remedy to this dilemma by building on standard C ++17 with its so-called single-source approach: Programmers write standard C ++ code and expose parallelism using C++17 keywords. The application is<br />then transformed into a concrete implementation by the SYCL implementation. By encapsulating the OpenCL ecosystem, different SYCL implementations enable not only the programming of CPUs but also of heterogeneous platforms such as GPUs or other devices. For the first time, this paper showcases a SYCL-<br />based solver for the nodal Discontinuous Galerkin method for Maxwell’s equations on unstructured meshes. We compare our solution to a previous C-based implementation with respect to programmability and performance on heterogeneous platforms.<br

@inproceedings{Afzal_Schmitt_Alhaddad_Grynko_Teich_Förstner_Hannig_2018, title={Solving Maxwell’s Equations with Modern C++ and SYCL: A Case Study}, DOI={10.1109/ASAP.2018.8445127}, booktitle={Proceedings of the 29th Annual IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP)}, author={Afzal, Ayesha and Schmitt, Christian and Alhaddad, Samer and Grynko, Yevgen and Teich, Jürgen and Förstner, Jens and Hannig, Frank}, year={2018}, pages={49–56} }


OpenCL-based FPGA Design to Accelerate the Nodal Discontinuous Galerkin Method for Unstructured Meshes

T. Kenter, G. Mahale, S. Alhaddad, Y. Grynko, C. Schmitt, A. Afzal, F. Hannig, J. Förstner, C. Plessl, in: Proc. Int. Symp. on Field-Programmable Custom Computing Machines (FCCM), IEEE, 2018

The exploration of FPGAs as accelerators for scientific simulations has so far mostly been focused on small kernels of methods working on regular data structures, for example in the form of stencil computations for finite difference methods. In computational sciences, often more advanced methods are employed that promise better stability, convergence, locality and scaling. Unstructured meshes are shown to be more effective and more accurate, compared to regular grids, in representing computation domains of various shapes. Using unstructured meshes, the discontinuous Galerkin method preserves the ability to perform explicit local update operations for simulations in the time domain. In this work, we investigate FPGAs as target platform for an implementation of the nodal discontinuous Galerkin method to find time-domain solutions of Maxwell's equations in an unstructured mesh. When maximizing data reuse and fitting constant coefficients into suitably partitioned on-chip memory, high computational intensity allows us to implement and feed wide data paths with hundreds of floating point operators. By decoupling off-chip memory accesses from the computations, high memory bandwidth can be sustained, even for the irregular access pattern required by parts of the application. Using the Intel/Altera OpenCL SDK for FPGAs, we present different implementation variants for different polynomial orders of the method. In different phases of the algorithm, either computational or bandwidth limits of the Arria 10 platform are almost reached, thus outperforming a highly multithreaded CPU implementation by around 2x.

@inproceedings{Kenter_Mahale_Alhaddad_Grynko_Schmitt_Afzal_Hannig_Förstner_Plessl_2018, title={OpenCL-based FPGA Design to Accelerate the Nodal Discontinuous Galerkin Method for Unstructured Meshes}, DOI={10.1109/FCCM.2018.00037}, booktitle={Proc. Int. Symp. on Field-Programmable Custom Computing Machines (FCCM)}, publisher={IEEE}, author={Kenter, Tobias and Mahale, Gopinath and Alhaddad, Samer and Grynko, Yevgen and Schmitt, Christian and Afzal, Ayesha and Hannig, Frank and Förstner, Jens and Plessl, Christian}, year={2018} }


Tailored UV Emission by Nonlinear IR Excitation from ZnO Photonic Crystal Nanocavities

S.P. Hoffmann, M. Albert, N. Weber, D. Sievers, J. Förstner, T. Zentgraf, C. Meier, ACS Photonics (2018), 5, pp. 1933-1942

@article{Hoffmann_Albert_Weber_Sievers_Förstner_Zentgraf_Meier_2018, title={Tailored UV Emission by Nonlinear IR Excitation from ZnO Photonic Crystal Nanocavities}, volume={5}, DOI={10.1021/acsphotonics.7b01228}, journal={ACS Photonics}, publisher={American Chemical Society (ACS)}, author={Hoffmann, Sandro P. and Albert, Maximilian and Weber, Nils and Sievers, Denis and Förstner, Jens and Zentgraf, Thomas and Meier, Cedrik}, year={2018}, pages={1933–1942} }


2017

Directional Emission from Dielectric Leaky-Wave Nanoantennas

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, S. Linden, Nano Letters (2017), 17(7), pp. 4178-4183

@article{Peter_Hildebrandt_Schlickriede_Gharib_Zentgraf_Förstner_Linden_2017, title={Directional Emission from Dielectric Leaky-Wave Nanoantennas}, volume={17}, DOI={10.1021/acs.nanolett.7b00966}, number={7}, journal={Nano Letters}, publisher={American Chemical Society (ACS)}, author={Peter, Manuel and Hildebrandt, Andre and Schlickriede, Christian and Gharib, Kimia and Zentgraf, Thomas and Förstner, Jens and Linden, Stefan}, year={2017}, pages={4178–4183} }


Simulation of Second Harmonic Generation from Photonic Nanostructures Using the Discontinuous Galerkin Time Domain Method

Y. Grynko, J. Förstner, in: Recent Trends in Computational Photonics, Springer International Publishing, 2017, pp. 261-284

We apply the Discontinuous Galerkin Time Domain (DGTD) method for numerical simulations of the second harmonic generation from various metallic nanostructures. A Maxwell–Vlasov hydrodynamic model is used to describe the nonlinear effects in the motion of the excited free electrons in a metal. The results are compared with the corresponding experimental measurements for split-ring resonators and plasmonic gap antennas.

@inbook{Grynko_Förstner_2017, place={Cham}, title={Simulation of Second Harmonic Generation from Photonic Nanostructures Using the Discontinuous Galerkin Time Domain Method}, DOI={10.1007/978-3-319-55438-9_9}, booktitle={Recent Trends in Computational Photonics}, publisher={Springer International Publishing}, author={Grynko, Yevgen and Förstner, Jens}, editor={Agrawal, ArtiEditor}, year={2017}, pages={261–284} }


Direction-tunable enhanced emission from a subwavelength metallic double-nanoslit structure

X. Song, N. Wang, M. Yan, C. Lin, J. Förstner, W. Yang, Optics Express (2017), 25(12), pp. 13207-13214

Controlling light emission out of subwavelength nanoslit/aperture structures is of great important for highly integrated photonic circuits. Here we propose a new method to achieve direction-tunable emission based on a compact metallic microcavity with double nanoslit. Our method combines the principles of Young’s interference and surface plasmon polaritons interference. We show that the direction of the far-field beam can be controlled over a wide range of angles by manipulating the frequency and relative phase of light arriving at the two slits, which holds promise for applications in the ultracompact optoelectronic devices.

@article{Song_Wang_Yan_Lin_Förstner_Yang_2017, title={Direction-tunable enhanced emission from a subwavelength metallic double-nanoslit structure}, volume={25}, DOI={10.1364/oe.25.013207}, number={12}, journal={Optics Express}, publisher={The Optical Society}, author={Song, Xiaohong and Wang, Nini and Yan, Ming and Lin, Cheng and Förstner, Jens and Yang, Weifeng}, year={2017}, pages={13207–13214} }


Spiral modes supported by circular dielectric tubes and tube segments

L. Ebers, M. Hammer, J. Förstner, Optical and Quantum Electronics (2017), 49(4), pp. 49:176

The modal properties of curved dielectric slab waveguides are investigated. We consider quasi-confined, attenuated modes that propagate at oblique angles with respect to the axis through the center of curvature. Our analytical model describes the transition from scalar 2-D TE/TM bend modes to lossless spiral waves at near-axis propagation angles, with a continuum of vectorial attenuated spiral modes in between. Modal solutions are characterized in terms of directional wavenumbers and attenuation constants. Examples for vectorial mode profiles illustrate the effects of oblique wave propagation along the curved slab segments. For the regime of lossless spiral waves, the relation with the guided modes of corresponding dielectric tubes is demonstrated.

@article{Ebers_Hammer_Förstner_2017, title={Spiral modes supported by circular dielectric tubes and tube segments}, volume={49}, DOI={10.1007/s11082-017-1011-x}, number={4}, journal={Optical and Quantum Electronics}, publisher={Springer Nature}, author={Ebers, Lena and Hammer, Manfred and Förstner, Jens}, year={2017}, pages={49:176} }


Hybrid coupled-mode modeling in 3D: perturbed and coupled channels, and waveguide crossings

M. Hammer, S. Alhaddad, J. Förstner, Journal of the Optical Society of America B (2017), 34(3), pp. 613-624

The 3D implementation of a hybrid analytical/numerical variant of the coupled-mode theory is discussed. Eigenmodes of the constituting dielectric channels are computed numerically. The frequency-domain coupled-mode models then combine these into fully vectorial approximations for the optical electromagnetic fields of the composite structure. Following a discretization of amplitude functions by 1D finite elements, pro- cedures from the realm of finite-element numerics are applied to establish systems of linear equations for the then- discrete modal amplitudes. Examples substantiate the functioning of the technique and allow for some numerical assessment. The full 3D simulations are highly efficient in memory consumption, moderately demanding in com- putational time, and, in regimes of low radiative losses, sufficiently accurate for practical design. Our results include the perturbation of guided modes by changes of the refractive indices, the interaction of waves in parallel, horizontally or vertically coupled straight waveguides, and a series of crossings of potentially overlapping channels with fairly arbitrary relative positions and orientations.

@article{Hammer_Alhaddad_Förstner_2017, title={Hybrid coupled-mode modeling in 3D: perturbed and coupled channels, and waveguide crossings}, volume={34}, DOI={10.1364/josab.34.000613}, number={3}, journal={Journal of the Optical Society of America B}, publisher={The Optical Society}, author={Hammer, Manfred and Alhaddad, Samer and Förstner, Jens}, year={2017}, pages={613–624} }


Guided Wave Interaction in Photonic Integrated Circuits — A Hybrid Analytical/Numerical Approach to Coupled Mode Theory

M. Hammer, in: Recent Trends in Computational Photonics, 204th ed., Springer, 2017, pp. 77-105

Frequently, optical integrated circuits combine elements (waveguide channels, cavities), the simulation of which is well established through mature numerical eigenproblem solvers. It remains to predict the interaction of these modes. We address this task by a general, “Hybrid” variant (HCMT) of Coupled Mode Theory. Using methods from finite-element numerics, the properties of a circuit are approximated by superpositions of eigen-solutions for its constituents, leading to quantitative, computationally cheap, and easily interpretable models.

@inbook{Hammer_2017, edition={204}, series={ Springer Series in Optical Sciences book series}, title={Guided Wave Interaction in Photonic Integrated Circuits — A Hybrid Analytical/Numerical Approach to Coupled Mode Theory}, volume={204}, booktitle={Recent Trends in Computational Photonics}, publisher={Springer}, author={Hammer, Manfred}, editor={Agrawal, ArtiEditor}, year={2017}, pages={77–105}, collection={ Springer Series in Optical Sciences book series} }


Radar backscattering from a large-grain cometary coma: numerical simulation

S. Dogra, Y. Grynko, E. Zubko, J. Förstner, Astronomy & Astrophysics (2017), 608, pp. A20

We numerically simulate the circular polarization ratio of the radar signal backscattered from a large-grain cometary coma and compare the simulation results with the radar measurements for seven comets. We apply the discrete dipole approximation method and a model of random irregular particles. Our results confirm water ice composition of the cm-sized chunks detected by the NASA Deep Impact space probe in the vicinity of the nucleus of Comet 103P/Hartley 2. The index of the power-law size distribution in this case can be constrained to the range n ≈ 3.3–4.3. For the other considered comets the circular polarization ratio can be reproduced with variations of the power index between 2 and 5.

@article{Dogra_Grynko_Zubko_Förstner_2017, title={Radar backscattering from a large-grain cometary coma: numerical simulation}, volume={608}, DOI={10.1051/0004-6361/201730801}, journal={Astronomy & Astrophysics}, publisher={EDP Sciences}, author={Dogra, Shraddha and Grynko, Yevgen and Zubko, Evgenij and Förstner, Jens}, year={2017}, pages={A20} }


Flexible FPGA design for FDTD using OpenCL

T. Kenter, J. Förstner, C. Plessl, in: Proc. Int. Conf. on Field Programmable Logic and Applications (FPL), IEEE, 2017

Compared to classical HDL designs, generating FPGA with high-level synthesis from an OpenCL specification promises easier exploration of different design alternatives and, through ready-to-use infrastructure and common abstractions for host and memory interfaces, easier portability between different FPGA families. In this work, we evaluate the extent of this promise. To this end, we present a parameterized FDTD implementation for photonic microcavity simulations. Our design can trade-off different forms of parallelism and works for two independent OpenCL-based FPGA design flows. Hence, we can target FPGAs from different vendors and different FPGA families. We describe how we used pre-processor macros to achieve this flexibility and to work around different shortcomings of the current tools. Choosing the right design configurations, we are able to present two extremely competitive solutions for very different FPGA targets, reaching up to 172 GFLOPS sustained performance. With the portability and flexibility demonstrated, code developers not only avoid vendor lock-in, but can even make best use of real trade-offs between different architectures.

@inproceedings{Kenter_Förstner_Plessl_2017, title={Flexible FPGA design for FDTD using OpenCL}, DOI={10.23919/FPL.2017.8056844}, booktitle={Proc. Int. Conf. on Field Programmable Logic and Applications (FPL)}, publisher={IEEE}, author={Kenter, Tobias and Förstner, Jens and Plessl, Christian}, year={2017} }


2016

Simulations of high harmonic generation from plasmonic nanoparticles in the terahertz region

Y. Grynko, T. Zentgraf, T. Meier, J. Förstner, Applied Physics B (2016), 122(9), pp. 242

@article{Grynko_Zentgraf_Meier_Förstner_2016, title={Simulations of high harmonic generation from plasmonic nanoparticles in the terahertz region}, volume={122}, DOI={10.1007/s00340-016-6510-0}, number={9}, journal={Applied Physics B}, publisher={Springer Nature}, author={Grynko, Yevgen and Zentgraf, Thomas and Meier, Torsten and Förstner, Jens}, year={2016}, pages={242} }


Wave interaction in photonic integrated circuits: Hybrid analytical / numerical coupled mode modeling

M. Hammer, in: Integrated Optics: Devices, Materials, and Technologies XX, SPIE, 2016, pp. 975018-975018-8

Typical optical integrated circuits combine elements, like straight and curved waveguides, or cavities, the simulation and design of which is well established through numerical eigenproblem-solvers. It remains to predict the interaction of these modes. We address this task by a ”Hybrid” variant (HCMT) of Coupled Mode Theory. Using methods from finite-element numerics, the optical properties of a circuit are approximated by superpositions of eigen-solutions for its constituents, leading to quantitative, low-dimensional, and interpretable models in the frequency domain. Spectral scans are complemented by the direct computation of supermode properties (spectral positions and linewidths, coupling-induced phase shifts). This contribution outlines the theoretical background, and discusses briefly limitations and implementational details, with the help of an example of a 2-D coupled-resonator-optical-waveguide configuration.

@inproceedings{Hammer_2016, title={Wave interaction in photonic integrated circuits: Hybrid analytical / numerical coupled mode modeling}, DOI={10.1117/12.2214331}, number={9750}, booktitle={Integrated Optics: Devices, Materials, and Technologies XX}, publisher={SPIE}, author={Hammer, Manfred}, editor={Broquin, Jean-Emmanuel and Nunzi Conti, GualtieroEditors}, year={2016}, pages={975018-975018–8} }


Fabrication and characterization of two-dimensional cubic AlN photonic crystal membranes containing zincblende GaN quantum dots

S. Blumenthal, M. Bürger, A. Hildebrandt, J. Förstner, N. Weber, C. Meier, D. Reuter, D.J. As, physica status solidi (c) (2016), 13(5-6), pp. 292-296

We successfully developed a process to fabricate freestanding cubic aluminium nitride (c-AlN) membranes containing cubic gallium nitride (c-GaN) quantum dots (QDs). The samples were grown by plasma assisted molecular beam epitaxy (MBE). To realize the photonic crystal (PhC) membrane we have chosen a triangular array of holes. The array was fabricated by electron beam lithography and several steps of reactive ion etching (RIE) with the help of a hard mask and an undercut of the active layer. The r/a- ratio of 0.35 was deter- mined by numerical simulations to obtain a preferably wide photonic band gap. Micro-photoluminescence (μ-PL) measurements of the photonic crystals, in particular of a H1 and a L3 cavity, and the emission of the QD ensemble were performed to characterize the samples. The PhCs show high quality factors of 4400 for the H1 cavity and about 5000/3000 for two different modes of the L3 cavity, respectively. The energy of the fundamental modes is in good agreement to the numerical simulations.

@article{Blumenthal_Bürger_Hildebrandt_Förstner_Weber_Meier_Reuter_As_2016, title={Fabrication and characterization of two-dimensional cubic AlN photonic crystal membranes containing zincblende GaN quantum dots}, volume={13}, DOI={10.1002/pssc.201600010}, number={5–6}, journal={physica status solidi (c)}, publisher={Wiley}, author={Blumenthal, Sarah and Bürger, Matthias and Hildebrandt, Andre and Förstner, Jens and Weber, Nils and Meier, Cedrik and Reuter, Dirk and As, Donat J.}, year={2016}, pages={292–296} }


Discrete plasmonic solitons in graphene-coated nanowire arrays

Y. Kou, J. Förstner, Optics Express (2016), 24(5), pp. 4714

e study the discrete soliton formation in one- and two- dimensional arrays of nanowires coated with graphene monolayers. Highly confined solitons, including the fundamental and the higher-order modes, are found to be supported by the proposed structure with a low level of power flow. Numerical analysis reveals that, by tuning the input intensity and Fermi energy, the beam diffraction, soliton dimension and propagation loss can be fully controlled in a broad range, indicating potential values of the graphene-based solitons in nonlinear/active nanophotonic systems.

@article{Kou_Förstner_2016, title={Discrete plasmonic solitons in graphene-coated nanowire arrays}, volume={24}, DOI={10.1364/oe.24.004714}, number={5}, journal={Optics Express}, publisher={The Optical Society}, author={Kou, Yao and Förstner, Jens}, year={2016}, pages={4714} }


The role of electromagnetic interactions in second harmonic generation from plasmonic metamaterials

J. Alberti, H. Linnenbank, S. Linden, Y. Grynko, J. Förstner, Applied Physics B (2016), 122(2), pp. 45-50

We report on second harmonic generation spectroscopy on a series of rectangular arrays of split-ring resonators. Within the sample series, the lattice constants are varied, but the area of the unit cell is kept fixed. The SHG signal intensity of the different arrays upon resonant excitation of the fundamental plasmonic mode strongly depends on the respective arrangement of the split-ring resonators. This finding can be explained by variations of the electromagnetic interactions between the split-ring resonators in the different arrays. The experimental results are in agreement with numerical calculations based on the discontinuous Galerkin time-domain method. (PDF) The role of electromagnetic interactions.... Available from: https://www.researchgate.net/publication/297612326_The_role_of_electromagnetic_interactions_in_second_harmonic_generation_from_plasmonic_metamaterials [accessed Aug 13 2018].

@article{Alberti_Linnenbank_Linden_Grynko_Förstner_2016, title={The role of electromagnetic interactions in second harmonic generation from plasmonic metamaterials}, volume={122}, DOI={10.1007/s00340-015-6311-x}, number={2}, journal={Applied Physics B}, publisher={Springer Nature}, author={Alberti, Julian and Linnenbank, Heiko and Linden, Stefan and Grynko, Yevgen and Förstner, Jens}, year={2016}, pages={45–50} }


Light scattering by ice crystals of cirrus clouds: comparison of the physical optics methods

A.V. Konoshonkin, N.V. Kustova, A.G. Borovoi, Y. Grynko, J. Förstner, Journal of Quantitative Spectroscopy and Radiative Transfer (2016), 182, pp. 12-23

The physical optics approximations are derived from the Maxwell equations. The scattered field equations by Kirchhoff, Stratton-Chu, Kottler and Franz are compared and discussed. It is shown that in the case of faceted particles, these equations reduce to a sum of the diffraction integrals, where every diffraction integral is associated with one plane–parallel optical beam leaving a particle facet. In the far zone, these diffraction integrals correspond to the Fraunhofer diffraction patterns. The paper discusses the E-, M- and (E, M)-diffraction theories as applied to ice crystals of cirrus clouds. The comparison to the exact solution obtained by the discontinuous Galerkin time domain method shows that the Kirchhoff diffraction theory is preferable.

@article{Konoshonkin_Kustova_Borovoi_Grynko_Förstner_2016, title={Light scattering by ice crystals of cirrus clouds: comparison of the physical optics methods}, volume={182}, DOI={10.1016/j.jqsrt.2016.05.006}, journal={Journal of Quantitative Spectroscopy and Radiative Transfer}, publisher={Elsevier BV}, author={Konoshonkin, Alexander V. and Kustova, Natalia V. and Borovoi, Anatoli G. and Grynko, Yevgen and Förstner, Jens}, year={2016}, pages={12–23} }


Phase sensitive properties and coherent manipulation of a photonic crystal microcavity

W. Quiring, B. Jonas, J. Förstner, A.K. Rai, D. Reuter, A.D. Wieck, A. Zrenner, Optics Express (2016), 24(18), pp. 20672-20684

We present phase sensitive cavity field measurements on photonic crystal microcavities. The experiments have been performed as autocorrelation measurements with ps double pulse laser excitation for resonant and detuned conditions. Measured E-field autocorrelation functions reveal a very strong detuning dependence of the phase shift between laser and cavity field and of the autocorrelation amplitude of the cavity field. The fully resolved phase information allows for a precise frequency discrimination and hence for a precise measurement of the detuning between laser and cavity. The behavior of the autocorrelation amplitude and phase and their detuning dependence can be fully described by an analytic model. Furthermore, coherent control of the cavity field is demonstrated by tailored laser excitation with phase and amplitude controlled pulses. The experimental proof and verification of the above described phenomena became possible by an electric detection scheme, which employs planar photonic crystal microcavity photo diodes with metallic Schottky contacts in the defect region of the resonator. The applied photo current detection was shown to work also efficiently at room temperature, which make electrically contacted microcavities attractive for real world applications.

@article{Quiring_Jonas_Förstner_Rai_Reuter_Wieck_Zrenner_2016, title={Phase sensitive properties and coherent manipulation of a photonic crystal microcavity}, volume={24}, DOI={10.1364/oe.24.020672}, number={18}, journal={Optics Express}, publisher={The Optical Society}, author={Quiring, Wadim and Jonas, Björn and Förstner, Jens and Rai, Ashish K. and Reuter, Dirk and Wieck, Andreas D. and Zrenner, Artur}, year={2016}, pages={20672–20684} }


Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness

Y. Grynko, Y. Shkuratov, J. Förstner, Optics Letters (2016), 41(15), pp. 3491-3493

We simulate light scattering by random irregular particles that have dimensions much larger than the wavelength of incident light at the size parameter of 𝑋=200 using the discontinuous Galerkin time domain method. A comparison of the DGTD solution for smoothly faceted particles with that obtained with a geometric optics model shows good agreement for the scattering angle curves of intensity and polarization. If a wavelength-scale surface roughness is introduced, diffuse scattering at rough interface results in smooth and featureless curves for all scattering matrix elements which is consistent with the laboratory measurements of real samples.

@article{Grynko_Shkuratov_Förstner_2016, title={Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness}, volume={41}, DOI={10.1364/ol.41.003491}, number={15}, journal={Optics Letters}, publisher={The Optical Society}, author={Grynko, Yevgen and Shkuratov, Yuriy and Förstner, Jens}, year={2016}, pages={3491–3493} }


Comparison between the physical-optics approximation and exact methods solving the problem of light scattering by ice crystals of cirrus clouds

A.V. Konoshonkin, N.V. Kustova, A.G. Borovoi, H. Okamoto, K. Sato, H. Ishimoto, Y. Grynko, J. Förstner, in: 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, SPIE, 2016

In the problem of light scattering by ice crystals of cirrus clouds, two exact methods (FDTD – finite difference time domain and DGTD – discontinuous Galerkin time domain) and the physical-optics approximation are used for numerical calculations of the Mueller matrix in the case of ice hexagonal plates and columns. It is shown that for the crystals larger than 10 μm at the wavelength of 0.532 μm the exact methods and physical-optics approximation closely agreed within three diffraction fringes about the centers of the diffraction patterns. As a result, in the case of random orientation of these crystals, the physical-optics approximation provides accuracy 95% for the averaged Mueller matrix.

@inproceedings{Konoshonkin_Kustova_Borovoi_Okamoto_Sato_Ishimoto_Grynko_Förstner_2016, title={Comparison between the physical-optics approximation and exact methods solving the problem of light scattering by ice crystals of cirrus clouds}, DOI={10.1117/12.2248409}, booktitle={22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics}, publisher={SPIE}, author={Konoshonkin, Alexander V. and Kustova, Natalia V. and Borovoi, Anatoli G. and Okamoto, H. and Sato, K. and Ishimoto, H. and Grynko, Yevgen and Förstner, Jens}, editor={Matvienko, Gennadii G. and Romanovskii, Oleg A.Editors}, year={2016} }


Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation

A. Konoshonkin, A. Borovoi, N. Kustova, H. Okamoto, H. Ishimoto, Y. Grynko, J. Förstner, Journal of Quantitative Spectroscopy and Radiative Transfer (2016), 195, pp. 132-140

The problem of light scattering by ice crystals of cirrus clouds is considered in the case of a hexagonal ice plate with different distributions over crystal orientations. The physical-optics approximation based on (E, M)-diffraction theory is compared with two exact numerical methods: the finite difference time domain (FDTD) and the discontinuous Galerkin time domain (DGTD) in order to estimate its accuracy and limits of applicability. It is shown that the accuracy of the physical-optics approximation is estimated as 95% for the averaged backscattering Mueller matrix for particles with size parameter more than 120. Furthermore, the simple expression that allows one to estimate the minimal number of particle orientations required for appropriate spatial averaging has been derived.

@article{Konoshonkin_Borovoi_Kustova_Okamoto_Ishimoto_Grynko_Förstner_2016, title={Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation}, volume={195}, DOI={10.1016/j.jqsrt.2016.12.024}, journal={Journal of Quantitative Spectroscopy and Radiative Transfer}, publisher={Elsevier BV}, author={Konoshonkin, Alexander and Borovoi, Anatoli and Kustova, Natalia and Okamoto, Hajime and Ishimoto, Hiroshi and Grynko, Yevgen and Förstner, Jens}, year={2016}, pages={132–140} }


Oblique incidence of semi-guided waves on step-like folds in planar dielectric slabs: Lossless vertical interconnects in 3D integrated photonic circuits

A. Hildebrandt, S. Alhaddad, M. Hammer, J. Förstner, in: Integrated Optics: Devices, Materials, and Technologies XX, SPIE, 2016

@inproceedings{Hildebrandt_Alhaddad_Hammer_Förstner_2016, title={Oblique incidence of semi-guided waves on step-like folds in planar dielectric slabs: Lossless vertical interconnects in 3D integrated photonic circuits}, DOI={10.1117/12.2214460}, booktitle={Integrated Optics: Devices, Materials, and Technologies XX}, publisher={SPIE}, author={Hildebrandt, Andre and Alhaddad, Samer and Hammer, Manfred and Förstner, Jens}, editor={Broquin, Jean-Emmanuel and Nunzi Conti, GualtieroEditors}, year={2016} }


Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas

H. Linnenbank, Y. Grynko, J. Förstner, S. Linden, Light: Science & Applications (2016), 5(1), pp. e16013

@article{Linnenbank_Grynko_Förstner_Linden_2016, title={Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas}, volume={5}, DOI={10.1038/lsa.2016.13}, number={1}, journal={Light: Science & Applications}, publisher={Springer Nature}, author={Linnenbank, Heiko and Grynko, Yevgen and Förstner, Jens and Linden, Stefan}, year={2016}, pages={e16013} }


2015

A process for the preparation of a population inversion in a quantum system using multi-pulse excitation

A. Zrenner, J. Förstner, D. Mantei. A process for the preparation of a population inversion in a quantum system using multi-pulse excitation, Patent DE102013012682B4. 2015.

Die Erfindung betrifft ein Verfahren zur Präparation einer Besetzungsinversion in einem Quantensystem (Q) mittels Mehrpulsanregung, wobei ein Quantensystem (Q) umfassend wenigstens einen Quantenpunkt mit zwei orthogonalen Zuständen (/X>, /Y>), insbesondere die mit zueinander orthogonalen Polarisationen (P1, P2) optisch anregbar sind, mit einem ersten Laserpuls (L1) beleuchtet wird, welcher zur resonanten Anregung des ersten (/Y>) der zwei Zustände (/X>, /Y>) eingestellt wird und zeitlich nachfolgend mit einem zweiten Laserpuls (L2) beleuchtet wird, der zur resonanten Anregung des zweiten (/X>) der zwei Zustände (/X>, /Y>) eingestellt wird.

@article{Zrenner_Förstner_Mantei_2015, title={A process for the preparation of a population inversion in a quantum system using multi-pulse excitation}, author={Zrenner, Artur and Förstner, Jens and Mantei, Dirk}, year={2015} }


Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy

N. Yamamoto, F. Javier García de Abajo, V. Myroshnychenko, Physical Review B (2015), 91(12), 125144

We investigate the interplay between geometrical lattice resonances and surface plasmons mediating the emission of Smith-Purcell visible light via angle-resolved cathodoluminescence spectroscopy. We observe strong modulations in the dispersion curves of Smith-Purcell radiation (SPR) when they intersect the surface plasmons of silver gratings using a 200-kV transmission electron microscope. The decay of the plasmons away from the grating is directly probed by controlling the electron-beam position relative to the sample surface with nanometer precision. Our measurements are in excellent agreement with numerical simulations, clearly revealing the presence of characteristic Fano profiles resulting from the interference of the light continuum and the discrete plasmon states for each direction of emission. The intensity anomaly in the SPR emission pattern can be well explained from the geometrical consideration of the intersections between the dispersion planes of the SPR and surface plasmon polariton (SPP). A strong and directional SPR beam can be realized under the condition that the SPR dispersion plane comes in contact with the band edge of the SPP dispersion plane.

@article{Yamamoto_Javier García de Abajo_Myroshnychenko_2015, title={Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy}, volume={91}, DOI={10.1103/physrevb.91.125144}, number={12125144}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Yamamoto, Naoki and Javier García de Abajo, F. and Myroshnychenko, Viktor}, year={2015} }


Robust Population Inversion by Polarization Selective Pulsed Excitation

D. Mantei, J. Förstner, S. Gordon, Y.A. Leier, A.K. Rai, D. Reuter, A.D. Wieck, A. Zrenner, Scientific Reports (2015), 5(1), pp. 10313

The coherent state preparation and control of single quantum systems is an important prerequisite for the implementation of functional quantum devices. Prominent examples for such systems are semiconductor quantum dots, which exhibit a fine structure split single exciton state and a V-type three level structure, given by a common ground state and two distinguishable and separately excitable transitions. In this work we introduce a novel concept for the preparation of a robust inversion by the sequential excitation in a V-type system via distinguishable paths.

@article{Mantei_Förstner_Gordon_Leier_Rai_Reuter_Wieck_Zrenner_2015, title={Robust Population Inversion by Polarization Selective Pulsed Excitation}, volume={5}, DOI={10.1038/srep10313}, number={1}, journal={Scientific Reports}, publisher={Springer Nature}, author={Mantei, D. and Förstner, Jens and Gordon, S. and Leier, Y. A. and Rai, A. K. and Reuter, Dirk and Wieck, A. D. and Zrenner, Artur}, year={2015}, pages={10313} }


Subwavelength binary plasmonic solitons

Y. Kou, J. Förstner, Optics Letters (2015), 40(6), pp. 851-854

We study the formation of subwavelength solitons in binary metal-dielectric lattices. We show that the transverse modulation of the lattice constant breaks the fundamental plasmonic band and suppresses the discrete diffraction of surface plasmon waves. New types of plasmonic solitons are found, and their characteristics are analyzed. We also demonstrate the existence of photonic-plasmonic vector solitons and elucidate their propagation properties.

@article{Kou_Förstner_2015, title={Subwavelength binary plasmonic solitons}, volume={40}, DOI={10.1364/ol.40.000851}, number={6}, journal={Optics Letters}, publisher={The Optical Society}, author={Kou, Yao and Förstner, Jens}, year={2015}, pages={851–854} }


How planar optical waves can be made to climb dielectric steps

M. Hammer, A. Hildebrandt, J. Förstner, Optics Letters (2015), 40(16), pp. 3711-3714

We show how to optically connect guiding layers at different elevations in a 3-D integrated photonic circuit. Transfer of optical power carried by planar, semi-guided waves is possible without reflections or radiation losses, and over large vertical distances. This functionality is realized through simple step-like folds of high-contrast dielectric slab waveguides, in combination with oblique wave incidence, and fulfilling a resonance condition. Radiation losses vanish, and polarization conversion is suppressed for TE wave incidence beyond certain critical angles. This can be understood by fundamental arguments resting on a version of Snell’s law. The two 90° corners of a step act as identical partial reflectors in a Fabry–Perot-like resonator setup. By selecting the step height, i.e., the distance between the reflectors, one realizes resonant states with full transmission. Rigorous quasi-analytical simulations for typical silicon/silica parameters demonstrate the functioning. Combinations of several step junctions can lead to other types of optical on-chip connects, e.g., U-turn- or bridge-like configurations.

@article{Hammer_Hildebrandt_Förstner_2015, title={How planar optical waves can be made to climb dielectric steps}, volume={40}, DOI={10.1364/ol.40.003711}, number={16}, journal={Optics Letters}, publisher={The Optical Society}, author={Hammer, Manfred and Hildebrandt, Andre and Förstner, Jens}, year={2015}, pages={3711–3714} }


Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements

A. Losquin, L.F. Zagonel, V. Myroshnychenko, B. Rodríguez-González, M. Tencé, L. Scarabelli, J. Förstner, L.M. Liz-Marzán, F.J. García de Abajo, O. Stéphan, M. Kociak, Nano Letters (2015), 15(2), pp. 1229-1237

Plasmon modes of the exact same individual gold nanoprisms are investigated through combined nanometer-resolved electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) measurements. We show that CL only probes the radiative modes, in contrast to EELS, which additionally reveals dark modes. The combination of both techniques on the same particles thus provides complementary information and also demonstrates that although the radiative modes give rise to very similar spatial distributions when probed by EELS or CL, their resonant energies appear to be different. We trace this phenomenon back to plasmon dissipation, which affects in different ways the plasmon signatures probed by these techniques. Our experiments are in agreement with electromagnetic numerical simulations and can be further interpreted within the framework of a quasistatic analytical model. We therefore demonstrate that CL and EELS are closely related to optical scattering and extinction, respectively, with the addition of nanometer spatial resolution.

@article{Losquin_Zagonel_Myroshnychenko_Rodríguez-González_Tencé_Scarabelli_Förstner_Liz-Marzán_García de Abajo_Stéphan_et al._2015, title={Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements}, volume={15}, DOI={10.1021/nl5043775}, number={2}, journal={Nano Letters}, publisher={American Chemical Society (ACS)}, author={Losquin, Arthur and Zagonel, Luiz F. and Myroshnychenko, Viktor and Rodríguez-González, Benito and Tencé, Marcel and Scarabelli, Leonardo and Förstner, Jens and Liz-Marzán, Luis M. and García de Abajo, F. Javier and Stéphan, Odile and et al.}, year={2015}, pages={1229–1237} }


Planar prism spectrometer based on adiabatically connected waveguiding slabs

F. Civitci, M. Hammer, H. Hoekstra, Optics Communications (2015), 365, pp. 29-37

The device principle of a prism-based on-chip spectrometer for TE polarization is introduced. The spectrometer exploits the modal dispersion in planar waveguides in a layout with slab regions having two different thicknesses of the guiding layer. The set-up uses parabolic mirrors, for the collimation of light of the input waveguide and focusing of the light to the receiver waveguides, which relies on total internal reflection at the interface between two such regions. These regions are connected adiabatically to prevent unwanted mode conversion and loss at the edges of the prism. The structure can be fabricated with two wet etching steps. The paper presents basic theory and a general approach for device optimization. The latter is illustrated with a numerical example assuming SiON technology.

@article{Civitci_Hammer_Hoekstra_2015, title={Planar prism spectrometer based on adiabatically connected waveguiding slabs}, volume={365}, DOI={10.1016/j.optcom.2015.11.066}, journal={Optics Communications}, publisher={Elsevier BV}, author={Civitci, F. and Hammer, Manfred and Hoekstra, H.J.W.M.}, year={2015}, pages={29–37} }


Full Resonant Transmission of Semiguided Planar Waves Through Slab Waveguide Steps at Oblique Incidence

M. Hammer, A. Hildebrandt, J. Förstner, Journal of Lightwave Technology (2015), 34(3), pp. 997-1005

Sheets of slab waveguides with sharp corners are investigated. By means of rigorous numerical experiments, we look at oblique incidence of semi-guided plane waves. Radiation losses vanish beyond a certain critical angle of incidence. One can thus realize lossless propagation through 90-degree corner configurations, where the remaining guided waves are still subject to pronounced reflection and polarization conversion. A system of two corners can be viewed as a structure akin to a Fabry-Perot-interferometer. By adjusting the distance between the two partial reflectors, here the 90-degree corners, one identifies step-like configurations that transmit the semi-guided plane waves without radiation losses, and virtually without reflections. Simulations of semi-guided beams with in-plane wide Gaussian profiles show that the effect survives in a true 3-D framework.

@article{Hammer_Hildebrandt_Förstner_2015, title={Full Resonant Transmission of Semiguided Planar Waves Through Slab Waveguide Steps at Oblique Incidence}, volume={34}, DOI={10.1109/jlt.2015.2502431}, number={3}, journal={Journal of Lightwave Technology}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Hammer, Manfred and Hildebrandt, Andre and Förstner, Jens}, year={2015}, pages={997–1005} }


Coupling Mediated Coherent Control of Localized Surface Plasmon Polaritons

F. Zeuner, M. Muldarisnur, A. Hildebrandt, J. Förstner, T. Zentgraf, Nano Letters (2015), 15(6), pp. 4189-4193

@article{Zeuner_Muldarisnur_Hildebrandt_Förstner_Zentgraf_2015, title={Coupling Mediated Coherent Control of Localized Surface Plasmon Polaritons}, volume={15}, DOI={10.1021/acs.nanolett.5b01381}, number={6}, journal={Nano Letters}, publisher={American Chemical Society (ACS)}, author={Zeuner, Franziska and Muldarisnur, Mulda and Hildebrandt, Andre and Förstner, Jens and Zentgraf, Thomas}, year={2015}, pages={4189–4193} }


2014

Engineering plasmonic and dielectric directional nanoantennas

A. Hildebrandt, M. Reichelt, T. Meier, J. Förstner, in: Ultrafast Phenomena and Nanophotonics XVIII, SPIE, 2014, pp. 89841G-8941G-6

Optical and infrared antennas provide a promising way to couple photons in and out of nanoscale structures. As counterpart to conventional radio antennas, they are able to increase optical felds in sub-wavelength volumes, to enhance excitation and emission of quantum emitters or to direct light, radiated by quantum emitters. The directed emission of these antennas has been mainly pursued by surface plasmon based devices, e.g. Yagi-Uda like antennas, which are rather complicated due to the coupling of several metallic particles. Also, like all metallic structures in optical or infrared regime, these devices are very sensitive to fabrication tolerances and are affected by strong losses. It has been shown recently, that such directed emission can be accomplished by dielectric materials as well. In this paper we present an optimization of nanoscopic antennas in the near infrared regime starting from a metallic Yagi-Uda structure. The optimization is done via a particle-swarm algorithm, using full time domain finite integration simulations to obtain the characteristics of the investigated structure, also taking into account substrates. Furthermore we present a dielectric antenna, which performs even better, due to the lack of losses by an appropriate choice of the dielectric material. These antennas are robust concerning fabrication tolerances and can be realized with different materials for both the antenna and the substrate, without using high index materials.

@inproceedings{Hildebrandt_Reichelt_Meier_Förstner_2014, series={SPIE Proceedings}, title={Engineering plasmonic and dielectric directional nanoantennas}, volume={8984}, DOI={10.1117/12.2036588}, booktitle={Ultrafast Phenomena and Nanophotonics XVIII}, publisher={SPIE}, author={Hildebrandt, Andre and Reichelt, Matthias and Meier, Torsten and Förstner, Jens}, editor={Betz, Markus and Elezzabi, Abdulhakem Y. and Song, Jin-Joo and Tsen, Kong-Thon}, year={2014}, pages={89841G-8941G–6}, collection={SPIE Proceedings} }


Light Scattering By Random Irregular Particles With Different Morphology

Y. Grynko, E. Zubko, 2014

We simulate numerically light scattering by random irregular particles of two classes of shape: Gaussian random field particles and agglomerated debri particles. Comparison of the angular dependencies of the scattering matrix elements for the case of non-absorbing material shows qualitative similarity of optical properties of both types despite different morphology of scatterers. Absorbing particles result in the difference in linear polarization. However, a strong similarty remains for the intensity curves.

@inproceedings{Grynko_Zubko_2014, title={Light Scattering By Random Irregular Particles With Different Morphology}, author={Grynko, Yevgen and Zubko, Evgenij}, year={2014} }


Simulation of Planar Photonic Resonators

S. Declair, J. Förstner, in: Handbook of Optical Microcavities, Pan Stanford Publishing Pte. Ltd., 2014

@inbook{Declair_Förstner_2014, title={Simulation of Planar Photonic Resonators}, volume={Kapitel 2}, booktitle={Handbook of Optical Microcavities}, publisher={Pan Stanford Publishing Pte. Ltd.}, author={Declair, Stefan and Förstner, Jens}, editor={Choi, Anthony H.W.Editor}, year={2014} }


General relation for group delay and the relevance of group delay for refractometric sensing

H.J.W.M. Hoekstra, M. Hammer, Journal of the Optical Society of America B (2014), 31(7), 1561-1567

The relevance of our definition for sensitivity in refractometric sensing, being the relative change in the transmittance of a certain output channel of an optical device over the change in the refractive index of the probed material, is discussed. It is compared to one based on spectral shift per refractive index unit change. Further, there is discussion on how group delay and sensitivity are interrelated and can be converted into each other and which physical quantities are relevant for high sensitivity. As a by-product of the theory presented, a general expression relating group delay and the ratio of the time-averaged optical energy and the input power is presented.

@article{Hoekstra_Hammer_2014, title={General relation for group delay and the relevance of group delay for refractometric sensing}, volume={31}, DOI={10.1364/josab.31.001561}, number={71561–1567}, journal={Journal of the Optical Society of America B}, publisher={The Optical Society}, author={Hoekstra, Hugo J. W. M. and Hammer, Manfred}, year={2014} }


Oblique incidence of semi-guided waves on rectangular slab waveguide discontinuities: A vectorial QUEP solver

M. Hammer, Optics Communications (2014), 338, pp. 447-456

The incidenceofthin-film-guided, in-planeunguidedwavesatobliqueanglesonstraightdiscontinuities of dielectricslabwaveguides,anearlyproblemofintegratedoptics,isbeingre-considered.The3-D frequencydomainMaxwellequationsreducetoaparametrizedinhomogeneousvectorialproblemona 2-D computationaldomain,withtransparent-influx boundaryconditions.Weproposearigorousvec- torial solverbasedonsimultaneousexpansionsintopolarizedlocalslabeigenmodesalongthetwo orthogonal crosssectioncoordinates(quadridirectionaleigenmodepropagationQUEP).Thequasi-ana- lytical schemeisapplicabletoconfigurations with — in principle — arbitrary crosssectiongeometries. Examples forahigh-contrastfacetofanasymmetricslabwaveguide,forthelateralexcitationofa channel waveguide,andforastepdiscontinuitybetweenslabwaveguidesofdifferentthicknessesare discussed.

@article{Hammer_2014, title={Oblique incidence of semi-guided waves on rectangular slab waveguide discontinuities: A vectorial QUEP solver}, volume={338}, DOI={10.1016/j.optcom.2014.09.087}, journal={Optics Communications}, publisher={Elsevier BV}, author={Hammer, Manfred}, year={2014}, pages={447–456} }


Accelerating Finite Difference Time Domain Simulations with Reconfigurable Dataflow Computers

H. Giefers, C. Plessl, J. Förstner, ACM SIGARCH Computer Architecture News (2014), 41(5), pp. 65-70

@article{Giefers_Plessl_Förstner_2014, title={Accelerating Finite Difference Time Domain Simulations with Reconfigurable Dataflow Computers}, volume={41}, DOI={10.1145/2641361.2641372}, number={5}, journal={ACM SIGARCH Computer Architecture News}, publisher={ACM}, author={Giefers, Heiner and Plessl, Christian and Förstner, Jens}, year={2014}, pages={65–70} }


2013

Optimal second-harmonic generation in split-ring resonator arrays

Y. Grynko, T. Meier, S. Linden, F.B.P. Niesler, M. Wegener, J. Förstner, in: Ultrafast Phenomena and Nanophotonics XVII, SPIE, 2013, pp. 86230L-86230L-9

Previous experimental measurements and numerical simulations give evidence of strong electric and magnetic field interaction between split-ring resonators in dense arrays. One can expect that such interactions have an influence on the second harmonic generation. We apply the Discontinuous Galerkin Time Domain method and the hydrodynamic Maxwell-Vlasov model to simulate the linear and nonlinear optical response from SRR arrays. The simulations show that dense placement of the constituent building blocks appears not always optimal and collective effects can lead to a significant suppression of the near fields at the fundamental frequency and, consequently, to the decrease of the SHG intensity. We demonstrate also the great role of the symmetry degree of the array layout which results in the variation of the SHG efficiency in range of two orders of magnitude.

@inproceedings{Grynko_Meier_Linden_Niesler_Wegener_Förstner_2013, series={SPIE Proceedings}, title={Optimal second-harmonic generation in split-ring resonator arrays}, volume={8623}, DOI={10.1117/12.2003279}, booktitle={Ultrafast Phenomena and Nanophotonics XVII}, publisher={SPIE}, author={Grynko, Yevgen and Meier, Torsten and Linden, Stefan and Niesler, Fabian B. P. and Wegener, Martin and Förstner, Jens}, editor={Betz, Markus and Elezzabi, Abdulhakem Y. and Song, Jin-Joo and Tsen, Kong-Thon}, year={2013}, pages={86230L-86230L–9}, collection={SPIE Proceedings} }


Collective effects in second-harmonic generation from split-ring-resonator arrays

F.B. Niesler, S. Linden, J. Förstner, Y. Grynko, T. Meier, M. Wegener, in: Conference on Lasers and Electro-Optics 2012, OSA, 2013

We perform experiments on resonant second-harmonic generation from planar gold split-ring-resonator arrays under normal incidence of light as a function of the lattice constant. Optimum nonlinear conversion occurs at intermediate lattice constants.

@inproceedings{Niesler_Linden_Förstner_Grynko_Meier_Wegener_2013, series={Physical review letters}, title={Collective effects in second-harmonic generation from split-ring-resonator arrays}, volume={109}, DOI={10.1364/qels.2012.qth3e.2}, number={1QTh3E.2}, booktitle={Conference on Lasers and Electro-Optics 2012}, publisher={OSA}, author={Niesler, Fabian B. and Linden, Stefan and Förstner, Jens and Grynko, Yevgen and Meier, Torsten and Wegener, Martin}, year={2013}, collection={Physical review letters} }


Whispering gallery modes in zinc-blende AlN microdisks containing non-polar GaN quantum dots

M. Bürger, M. Ruth, S. Declair, J. Förstner, C. Meier, D.J. As, Applied Physics Letters (2013), 102(8), pp. 081105

Whispering gallery modes (WGMs) were observed in 60 nm thin cubic AlN microdisk resonators containing a single layer of non-polar cubic GaN quantum dots. Freestanding microdisks were patterned by means of electron beam lithography and a two step reactive ion etching process. Micro-photoluminescence spectroscopy investigations were performed for optical characterization. We analyzed the mode spacing for disk diameters ranging from 2-4 lm. Numerical investigations using three dimensional finite difference time domain calculations were in good agreement with the experimental data. Whispering gallery modes of the radial orders 1 and 2 were identified by means of simulated mode field distributions.

@article{Bürger_Ruth_Declair_Förstner_Meier_As_2013, title={Whispering gallery modes in zinc-blende AlN microdisks containing non-polar GaN quantum dots}, volume={102}, DOI={10.1063/1.4793653}, number={8}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Bürger, M. and Ruth, M. and Declair, S. and Förstner, Jens and Meier, Cedrik and As, Donat Josef}, year={2013}, pages={081105} }


Cubic GaN quantum dots embedded in zinc-blende AlN microdisks

M. Bürger, R. Kemper, C. Bader, M. Ruth, S. Declair, C. Meier, J. Förstner, D. As, Journal of Crystal Growth (2013), 378, pp. 287-290

Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.

@article{Bürger_Kemper_Bader_Ruth_Declair_Meier_Förstner_As_2013, title={Cubic GaN quantum dots embedded in zinc-blende AlN microdisks}, volume={378}, DOI={10.1016/j.jcrysgro.2012.12.058}, journal={Journal of Crystal Growth}, publisher={Elsevier BV}, author={Bürger, M. and Kemper, R.M. and Bader, C.A. and Ruth, M. and Declair, S. and Meier, Cedrik and Förstner, Jens and As, D.J.}, year={2013}, pages={287–290} }


Light scattering by randomly irregular dielectric particles larger than the wavelength

Y. Grynko, Y. Shkuratov, J. Förstner, Optical Letters (2013), 38(23), pp. 5153-5156

@article{Grynko_Shkuratov_Förstner_2013, title={Light scattering by randomly irregular dielectric particles larger than the wavelength}, volume={38}, DOI={10.1364/OL.38.005153}, number={23}, journal={Optical Letters}, author={Grynko, Yevgen and Shkuratov, Yuriy and Förstner, Jens}, year={2013}, pages={5153–5156} }


2012

Engineering high harmonic generation in semiconductors via pulse shaping

M. Reichelt, A. Hildebrandt, A. Walther, J. Förstner, T. Meier, in: Ultrafast Phenomena and Nanophotonics XVI, SPIE, 2012

Paper Abstract High harmonic generation is investigated for a two-band model of a semiconductor nanostructure. Similar to an atomic two-level system, the semiconductor emits high harmonic radiation. We show how one can specifically enhance the emission for a given frequency by applying a non-trivially shaped laser pulse. Therefore, the semiconductor Bloch equations including the interband and additionally the intraband dynamics are solved numerically and the spectral shape of the input pulse is computed via an optimization algorithm. It is demonstrated that desired emission frequencies can be favored even though the overall input power is kept constant. We also suggest special metallic nano geometries to achieve enhanced localized optical fields. They are found by geometric optimization.

@inproceedings{Reichelt_Hildebrandt_Walther_Förstner_Meier_2012, series={SPIE Proceedings}, title={Engineering high harmonic generation in semiconductors via pulse shaping}, volume={8260}, DOI={10.1117/12.906338}, number={82601L}, booktitle={Ultrafast Phenomena and Nanophotonics XVI}, publisher={SPIE}, author={Reichelt, Matthias and Hildebrandt, Andre and Walther, Andrea and Förstner, Jens and Meier, Torsten}, year={2012}, collection={SPIE Proceedings} }


Collective Effects in Second-Harmonic Generation from Split-Ring-Resonator Arrays

S. Linden, F.B.P. Niesler, J. Förstner, Y. Grynko, T. Meier, M. Wegener, Physical Review Letters (2012), 109(1), 015502

Optical experiments on second-harmonic generation from split-ring-resonator square arrays show a nonmonotonic dependence of the conversion efficiency on the lattice constant. This finding is interpreted in terms of a competition between dilution effects and linewidth or near-field changes due to interactions among the individual elements in the array.

@article{Linden_Niesler_Förstner_Grynko_Meier_Wegener_2012, title={Collective Effects in Second-Harmonic Generation from Split-Ring-Resonator Arrays}, volume={109}, DOI={10.1103/physrevlett.109.015502}, number={1015502}, journal={Physical Review Letters}, publisher={American Physical Society (APS)}, author={Linden, S. and Niesler, F. B. P. and Förstner, Jens and Grynko, Yevgen and Meier, Torsten and Wegener, M.}, year={2012} }


Near-field coupling and second-harmonic generation in split-ring resonator arrays

Y. Grynko, T. Meier, S. Linden, F.B.P. Niesler, M. Wegener, J. Förstner, AIP Conference Proceedings, 2012, pp. 128-130

We simulate the linear and nonlinear optical response from split-ring resonator (SRR) arrays to study collective effects between the constituent SRRs that determine spectral properties of the second harmonic generation (SHG). We apply the Discontinuous Galerkin Time Domain (DGTD) method and the hydrodynamic Maxwell-Vlasov model to calculate the SHG emission. Our model is able to qualitatively reproduce and explain the non-monotonic dependence of the spectral SHG transmission measured experimentally for SRR arrays with different lattice constants

@inproceedings{Grynko_Meier_Linden_Niesler_Wegener_Förstner_2012, title={Near-field coupling and second-harmonic generation in split-ring resonator arrays}, volume={1475}, DOI={10.1063/1.4750118}, number={1}, publisher={AIP Conference Proceedings}, author={Grynko, Yevgen and Meier, Torsten and Linden, Stefan and Niesler, Fabian B. P. and Wegener, Martin and Förstner, Jens}, year={2012}, pages={128–130} }


Photonic crystal waveguides intersection for resonant quantum dot optical spectroscopy detection

X. Song, S. Declair, T. Meier, A. Zrenner, J. Förstner, Optics Express (2012), 20(13), pp. 14130-14136

Using a finite-difference time-domain method, we theoretically investigate the optical spectra of crossing perpendicular photonic crystal waveguides with quantum dots embedded in the central rod. The waveguides are designed so that the light mainly propagates along one direction and the cross talk is greatly reduced in the transverse direction. It is shown that when a quantum dot (QD) is resonant with the cavity, strong coupling can be observed via both the transmission and crosstalk spectrum. If the cavity is far off-resonant from the QD, both the cavity mode and the QD signal can be detected in the transverse direction since the laser field is greatly suppressed in this direction. This structure could have strong implications for resonant excitation and in-plane detection of QD optical spectroscopy.

@article{Song_Declair_Meier_Zrenner_Förstner_2012, title={Photonic crystal waveguides intersection for resonant quantum dot optical spectroscopy detection}, volume={20}, DOI={10.1364/oe.20.014130}, number={13}, journal={Optics Express}, publisher={The Optical Society}, author={Song, Xiaohong and Declair, Stefan and Meier, Torsten and Zrenner, Artur and Förstner, Jens}, year={2012}, pages={14130–14136} }


Optimization of the intensity enhancement in plasmonic nanoantennas

A. Hildebrandt, M. Reichelt, T. Meier, J. Förstner, AIP AIP Conference Proceedings 1475, 2012

We design the geometrical shape of plasmonic nanostructures to achieve field patterns with desired properties. For this, we combine Maxwell simulations and automatic optimization techniques. By allowing variations of the geometrical shape, which can be based on either boxes or arbitrary polygons, we maximize the desired objective.

@inproceedings{Hildebrandt_Reichelt_Meier_Förstner_2012, title={Optimization of the intensity enhancement in plasmonic nanoantennas}, DOI={10.1063/1.4750095}, number={59}, publisher={AIP AIP Conference Proceedings 1475}, author={Hildebrandt, Andre and Reichelt, Matthias and Meier, Torsten and Förstner, Jens}, year={2012} }


Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting

S. Schumacher, J. Förstner, A. Zrenner, M. Florian, C. Gies, P. Gartner, F. Jahnke, Optics Express (2012), 20(5), pp. 5335-5342

We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

@article{Schumacher_Förstner_Zrenner_Florian_Gies_Gartner_Jahnke_2012, title={Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting}, volume={20}, DOI={10.1364/oe.20.005335}, number={5}, journal={Optics Express}, publisher={OSA}, author={Schumacher, Stefan and Förstner, Jens and Zrenner, Artur and Florian, Matthias and Gies, Christopher and Gartner, Paul and Jahnke, Frank}, year={2012}, pages={5335–5342} }


Convey Vector Personalities – FPGA Acceleration with an OpenMP-like Effort?

B. Meyer, J. Schumacher, C. Plessl, J. Förstner, in: Proc. Int. Conf. on Field Programmable Logic and Applications (FPL), IEEE, 2012, pp. 189-196

Although the benefits of FPGAs for accelerating scientific codes are widely acknowledged, the use of FPGA accelerators in scientific computing is not widespread because reaping these benefits requires knowledge of hardware design methods and tools that is typically not available with domain scientists. A promising but hardly investigated approach is to develop tool flows that keep the common languages for scientific code (C,C++, and Fortran) and allow the developer to augment the source code with OpenMPlike directives for instructing the compiler which parts of the application shall be offloaded the FPGA accelerator. In this work we study whether the promise of effective FPGA acceleration with an OpenMP-like programming effort can actually be held. Our target system is the Convey HC-1 reconfigurable computer for which an OpenMP-like programming environment exists. As case study we use an application from computational nanophotonics. Our results show that a developer without previous FPGA experience could create an FPGA-accelerated application that is competitive to an optimized OpenMP-parallelized CPU version running on a two socket quad-core server. Finally, we discuss our experiences with this tool flow and the Convey HC-1 from a productivity and economic point of view.

@inproceedings{Meyer_Schumacher_Plessl_Förstner_2012, title={Convey Vector Personalities – FPGA Acceleration with an OpenMP-like Effort?}, DOI={10.1109/FPL.2012.6339370}, booktitle={Proc. Int. Conf. on Field Programmable Logic and Applications (FPL)}, publisher={IEEE}, author={Meyer, Björn and Schumacher, Jörn and Plessl, Christian and Förstner, Jens}, year={2012}, pages={189–196} }


2011

Theoretical approach to the ultrafast nonlinear optical response of metal slabs

M. Wand, A. Schindlmayr, T. Meier, J. Förstner, in: CLEO:2011 - Laser Applications to Photonic Applications , Optical Society of America, 2011

We present an ab-initio method for calculating nonlinear and nonlocal optical effects in metallic slabs with sub-wavelength thickness. We find a strong localization of the second-harmonic current at the metal-vacuum interface.

@inproceedings{Wand_Schindlmayr_Meier_Förstner_2011, series={OSA Technical Digest}, title={Theoretical approach to the ultrafast nonlinear optical response of metal slabs}, DOI={10.1364/CLEO_AT.2011.JTuI59}, number={JTuI59}, booktitle={CLEO:2011 - Laser Applications to Photonic Applications }, publisher={Optical Society of America}, author={Wand, Mathias and Schindlmayr, Arno and Meier, Torsten and Förstner, Jens}, year={2011}, collection={OSA Technical Digest} }


Intensity dependence of optically-induced injection currents in semiconductor quantum wells

M. Pochwala, H.T. Duc, J. Förstner, T. Meier, in: CLEO:2011 - Laser Applications to Photonic Applications, Optical Society of America, 2011

The intensity dependence of optically-induced injection currents in semiconductor quantum wells is investigated numerically. Oscillatory behavior of the electron charge current transients as function of intensity and time is predicted and explained.

@inproceedings{Pochwala_Duc_Förstner_Meier_2011, title={Intensity dependence of optically-induced injection currents in semiconductor quantum wells}, DOI={10.1364/qels.2011.qmk4}, number={QMK4}, booktitle={CLEO:2011 - Laser Applications to Photonic Applications}, publisher={Optical Society of America}, author={Pochwala, Michal and Duc, Huynh Thanh and Förstner, Jens and Meier, Torsten}, year={2011} }


Simulation of Mutual Coupling of Photonic Crystal Cavity Modes and Semiconductor Quantum Dots

S. Declair, X. Song, T. Meier, J. Förstner, in: THE FOURTH INTERNATIONAL WORKSHOP 2011, AIP, 2011, pp. 123-125

We present numerical results of the mutual coupling between photonic crystal cavities and semiconductor quantum dots. Normal mode splitting between a single cavity mode and a single quantum dot is shown under weak excitation, while under strong excitation Q‐factor dependent side bands appear, according to the AC‐Stark effect. Coupled photonic crystals, aligned parallel but displaced under a 30°‐angle for efficient coupling, show line splittings of all eigenmodes, if a single eigenmode is resonantly coupled to a single quantum dot. The mutual coupling of N resonant quantum dots to a single cavity mode results in a N−−√ scaling of the splitting, known from quantum optics, but corrected by the field amplitude fraction for not collocated quantum dots.

@inproceedings{Declair_Song_Meier_Förstner_2011, series={AIP Conference Proceedings}, title={Simulation of Mutual Coupling of Photonic Crystal Cavity Modes and Semiconductor Quantum Dots}, volume={1398}, DOI={10.1063/1.3644232}, number={123}, booktitle={THE FOURTH INTERNATIONAL WORKSHOP 2011}, publisher={AIP}, author={Declair, S. and Song, X. and Meier, Torsten and Förstner, Jens}, year={2011}, pages={123–125}, collection={AIP Conference Proceedings} }


Application of the Discontinuous Galerkin Time Domain Method to the Optics of Bi-Chiral Plasmonic Crystals

Y. Grynko, J. Förstner, T. Meier, A. Radke, T. Gissibl, P.V. Braun, H. Giessen, D.N. Chigrin, AIP, 2011, pp. 76-78

A simulation environment for metallic nanostructures based on the Discontinuous Galerkin Time Domain method is presented. It is used to model optical transmission by silver bi‐chiral plasmonic crystals. The results of simulations qualitatively and quantitavely agree with experimental measurements of transmitted circular polarization.

@article{Grynko_Förstner_Meier_Radke_Gissibl_Braun_Giessen_Chigrin_2011, series={ AIP Conference Proceedings}, title={Application of the Discontinuous Galerkin Time Domain Method to the Optics of Bi-Chiral Plasmonic Crystals}, volume={1398}, DOI={10.1063/1.3644217}, number={1}, publisher={AIP}, author={Grynko, Yevgen and Förstner, Jens and Meier, Torsten and Radke, André and Gissibl, Timo and Braun, Paul V. and Giessen, Harald and Chigrin, Dmitry N.}, year={2011}, pages={76–78}, collection={ AIP Conference Proceedings} }


Electron g-factor anisotropy in symmetric (110)-oriented GaAs quantum wells

J. Hübner, S. Kunz, S. Oertel, D. Schuh, M. Pochwała, H.T. Duc, J. Förstner, T. Meier, M. Oestreich, Physical Review B (2011), 84(4), pp. 041301(R)

We demonstrate by spin quantum beat spectroscopy that in undoped symmetric (110)-oriented GaAs/AlGaAs single quantum wells, even a symmetric spatial envelope wave function gives rise to an asymmetric in-plane electron Land´e g-factor. The anisotropy is neither a direct consequence of the asymmetric in-plane Dresselhaus splitting nor a direct consequence of the asymmetric Zeeman splitting of the hole bands, but rather it is a pure higher-order effect that exists as well for diamond-type lattices. The measurements for various well widths are very well described within 14 × 14 band k·p theory and illustrate that the electron spin is an excellent meter variable for mapping out the internal—otherwise hidden—symmetries in two-dimensional systems. Fourth-order perturbation theory yields an analytical expression for the strength of the g-factor anisotropy, providing a qualitative understanding of the observed effects.

@article{Hübner_Kunz_Oertel_Schuh_Pochwała_Duc_Förstner_Meier_Oestreich_2011, title={Electron g-factor anisotropy in symmetric (110)-oriented GaAs quantum wells}, volume={84}, DOI={10.1103/physrevb.84.041301}, number={4}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Hübner, J. and Kunz, S. and Oertel, S. and Schuh, D. and Pochwała, M. and Duc, H. T. and Förstner, Jens and Meier, Torsten and Oestreich, M.}, year={2011}, pages={041301(R)} }


Injection currents in (110)-oriented GaAs/AlGaAs quantum wells: recent progress in theory and experiment

H.T. Duc, M. Pochwala, J. Förstner, T. Meier, S. Priyadarshi, A.M. Racu, K. Pierz, U. Siegner, M. Bieler, in: Ultrafast Phenomena in Semiconductors and Nanostructure Materials XV, SPIE, 2011

We experimentally and theoretically investigate injection currents generated by femtosecond single-color circularly-polarized laser pulses in (110)-oriented GaAs quantum wells. The current measurements are performed by detecting the emitted Terahertz radiation at room temperature. The microscopic theory is based on a 14 x 14 k • p band-structure calculation in combination with the multi-subband semiconductor Bloch equations. For symmetric GaAs quantum wells grown in (110) direction, an oscillatory dependence of the injection currents on the exciting photon energy is obtained. The results of the microscopic theory are in good agreement with the measurements.

@inproceedings{Duc_Pochwala_Förstner_Meier_Priyadarshi_Racu_Pierz_Siegner_Bieler_2011, series={SPIE Proceedings}, title={Injection currents in (110)-oriented GaAs/AlGaAs quantum wells: recent progress in theory and experiment}, volume={7937}, DOI={10.1117/12.876972}, number={79370U}, booktitle={Ultrafast Phenomena in Semiconductors and Nanostructure Materials XV}, publisher={SPIE}, author={Duc, H. T. and Pochwala, M. and Förstner, Jens and Meier, Torsten and Priyadarshi, S. and Racu, A. M. and Pierz, K. and Siegner, U. and Bieler, M.}, editor={Tsen, Kong-Thon and Song, Jin-Joo and Betz, Markus and Elezzabi, Abdulhakem Y.}, year={2011}, collection={SPIE Proceedings} }


Simulation of the ultrafast nonlinear optical response of metal slabs

M. Wand, A. Schindlmayr, T. Meier, J. Förstner, Physica Status Solidi B (2011), 248(4), pp. 887-891

We present a nonequilibrium ab initio method for calculating nonlinear and nonlocal optical effects in metallic slabs with a thickness of several nanometers. The numerical analysis is based on the full solution of the time‐dependent Kohn–Sham equations for a jellium system and allows to study the optical response of metal electrons subject to arbitrarily shaped intense light pulses. We find a strong localization of the generated second‐harmonic current in the surface regions of the slabs.

@article{Wand_Schindlmayr_Meier_Förstner_2011, title={Simulation of the ultrafast nonlinear optical response of metal slabs}, volume={248}, DOI={10.1002/pssb.201001219}, number={4}, journal={Physica Status Solidi B}, publisher={Wiley-VCH}, author={Wand, Mathias and Schindlmayr, Arno and Meier, Torsten and Förstner, Jens}, year={2011}, pages={887–891} }


Intensity-dependent ultrafast dynamics of injection currents in unbiased GaAs quantum wells

M. Pochwała, H.T. Duc, J. Förstner, T. Meier, physica status solidi (RRL) - Rapid Research Letters (2011), 5(3), pp. 119-121

The intensity dependence of optically-induced injection currents in unbiased GaAs semiconductor quantum wells grown in [110] direction is investigated theoretically for a number of well widths. Our microscopic analysis is based on a 14 x 14 band k . p method in combination with the multisubband semiconductor Bloch equations. An oscillatory dependence of the injection current transients as function of intensity and time is predicted and explained. It is demonstrated that optical excitations involving different subbands and Rabi flopping are responsible for this complex dynamics.

@article{Pochwała_Duc_Förstner_Meier_2011, title={Intensity-dependent ultrafast dynamics of injection currents in unbiased GaAs quantum wells}, volume={5}, DOI={10.1002/pssr.201004529}, number={3}, journal={physica status solidi (RRL) - Rapid Research Letters}, publisher={Wiley}, author={Pochwała, Michał and Duc, Huynh Thanh and Förstner, Jens and Meier, Torsten}, year={2011}, pages={119–121} }


Numerical investigation of the coupling between microdisk modes and quantum dots

S. Declair, T. Meier, J. Förstner, physica status solidi (c) (2011), 8(4), pp. 1254-1257

We numerically investigate the coupling between circular resonators and study strong light‐matter coupling of single as well as multiple circular resonators to quantum‐mechanical resonators in two dimensional model simulations. For all cases, the computed resonances of the coupled system as function of the detuning show anti‐crossings. The obtained mode splittings of coupled optical resonators are strongly depending on distance and cluster in almost degenerate eigenstates for large distances, as is known from coupled resonator optical waveguides. Vacuum Rabi splitting is observed for a quantum dot strongly coupled to eigenmodes of single perfectly cylindrical resonators.

@article{Declair_Meier_Förstner_2011, title={Numerical investigation of the coupling between microdisk modes and quantum dots}, volume={8}, DOI={10.1002/pssc.201000869}, number={4}, journal={physica status solidi (c)}, publisher={Wiley}, author={Declair, S. and Meier, Torsten and Förstner, Jens}, year={2011}, pages={1254–1257} }


Oscillatory excitation energy dependence of injection currents in GaAs/AlGaAs quantum wells

H. Thanh Duc, J. Förstner, T. Meier, S. Priyadarshi, A.M. Racu, K. Pierz, U. Siegner, M. Bieler, physica status solidi (c) (2011), 8(4), pp. 1137-1140

The injection of photocurrents by femtosecond laser pulses in (110)-orientedGaAs/AlGaAs quantum wells is investigated theoretically and experimentally. The roomtemperature measurements show an oscillatory dependence of the injection current amplitude and direction on the excitation photon energy. Microscopic calculations using the semiconductor Bloch equations that are set up on the basis of k.p band structure calculations provide a detailed understanding of the experimental findings.

@article{Thanh Duc_Förstner_Meier_Priyadarshi_Racu_Pierz_Siegner_Bieler_2011, title={Oscillatory excitation energy dependence of injection currents in GaAs/AlGaAs quantum wells}, volume={8}, DOI={10.1002/pssc.201000831}, number={4}, journal={physica status solidi (c)}, publisher={Wiley}, author={Thanh Duc, Huynh and Förstner, Jens and Meier, Torsten and Priyadarshi, Shekhar and Racu, Ana Maria and Pierz, Klaus and Siegner, Uwe and Bieler, Mark}, year={2011}, pages={1137–1140} }


Application of the discontinous Galerkin time domain method to the optics of metallic nanostructures

Y. Grynko, J. Förstner, T. Meier, AAPP | Atti della Accademia Peloritana dei Pericolanti (2011), 89(1), C1V89S1P041

A simulation environment for metallic nanostructures based on the Discontinuous Galerkin Time Domain method is presented. The model is used to compute the linear and nonlinear optical response of split ring resonators and to study physical mechanisms that contribute to second harmonic generation.

@article{Grynko_Förstner_Meier_2011, title={Application of the discontinous Galerkin time domain method to the optics of metallic nanostructures}, volume={89}, DOI={10.1478/C1V89S1P041}, number={1C1V89S1P041}, journal={AAPP | Atti della Accademia Peloritana dei Pericolanti}, author={Grynko, Yevgen and Förstner, Jens and Meier, Torsten}, year={2011} }


Numerical analysis of coupled photonic crystal cavities

S. Declair, T. Meier, A. Zrenner, J. Förstner, Photonics and Nanostructures - Fundamentals and Applications (2011), 9(4), pp. 345-350

We numerically investigate the interaction dynamics of coupled cavities in planar photonic crystal slabs in different configurations. The single cavity is optimized for a long lifetime of the fundamental mode, reaching a Q-factor of ≈43, 000 using the method of gentle confinement. For pairs of cavities we consider several configurations and present a setup with strongest coupling observable as a line splitting of about 30 nm. Based on this configuration, setups with three cavities are investigated.

@article{Declair_Meier_Zrenner_Förstner_2011, title={Numerical analysis of coupled photonic crystal cavities}, volume={9}, DOI={10.1016/j.photonics.2011.04.012}, number={4}, journal={Photonics and Nanostructures - Fundamentals and Applications}, publisher={Elsevier BV}, author={Declair, S. and Meier, Torsten and Zrenner, Artur and Förstner, Jens}, year={2011}, pages={345–350} }


Method for transmission of information about polarization state of photons to stationary system

J. Förstner, D. Mantei, S.M.. de Vasconcellos, A. Zrenner. Method for transmission of information about polarization state of photons to stationary system, Patent DE102010020817A1. 2011.

Die Erfindung betrifft ein Verfahren zur Übertragung des Polarisationszustandes von Photonen in ein stationäres System, bei dem mit Photonen eines Polarisationszustandes ein Quanten-System angeregt wird, das zwei Zustände aufweist, die mit zueinander orthogonalen Polarisationen anregbar sind und deren energetischer Abstand kleiner ist als die energetische Bandbreite der Photonen, wobei beide Zustände in Abhängigkeit von der Polarisation besetzt werden und das Quantensystem einen Superpositionszustand beider Zustände einnimmt.

@article{Förstner_Mantei_de Vasconcellos_Zrenner_2011, title={Method for transmission of information about polarization state of photons to stationary system}, author={Förstner, Jens and Mantei, D. and de Vasconcellos, S. Michaelis and Zrenner, Artur}, year={2011} }


Phonon-assisted decoherence and tunneling in quantum dot molecules

A. Grodecka-Grad, J. Förstner, physica status solidi (c) (2011), 8(4), pp. 1125-1128

We study the influence of the phonon environment on the electron dynamics in a doped quantum dot molecule. A non-perturbative quantumkinetic theory based on correlation expansion is used in order to describe both diagonal and off-diagonal electron-phonon couplings representing real and virtual processes with relevant acoustic phonons. We show that the relaxation is dominated by phononassisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between the quantum dots is studied in detail.

@article{Grodecka-Grad_Förstner_2011, title={Phonon-assisted decoherence and tunneling in quantum dot molecules}, volume={8}, DOI={10.1002/pssc.201000824}, number={4}, journal={physica status solidi (c)}, publisher={Wiley}, author={Grodecka-Grad, Anna and Förstner, Jens}, year={2011}, pages={1125–1128} }


Transformation of scientific algorithms to parallel computing code: subdomain support in a MPI-multi-GPU backend

B. Meyer, C. Plessl, J. Förstner, in: Symp. on Application Accelerators in High Performance Computing (SAAHPC), IEEE Computer Society, 2011, pp. 60-63

@inproceedings{Meyer_Plessl_Förstner_2011, title={Transformation of scientific algorithms to parallel computing code: subdomain support in a MPI-multi-GPU backend}, DOI={10.1109/SAAHPC.2011.12}, booktitle={Symp. on Application Accelerators in High Performance Computing (SAAHPC)}, publisher={IEEE Computer Society}, author={Meyer, Björn and Plessl, Christian and Förstner, Jens}, year={2011}, pages={60–63} }


2010

Microscopic analysis of charge and spin photocurrents injected by circularly polarized one-color laser pulses in GaAs quantum wells

H.T. Duc, J. Förstner, T. Meier, Physical Review B (2010), 82(11), 115316

The dynamics of charge and spin injection currents excited by circularly polarized, one-color laser beams in semiconductor quantum wells is analyzed. Our microscopic approach is based on a 14x14 k · p band-structure theory in combination with multisubband semiconductor Bloch equations which allows a detailed analysis of the photogenerated carrier distributions and coherences in k space. Charge and spin injection currents are numerically calculated for [110]- and [001]-grown GaAs quantum wells including dc population contributions and ac contributions that arise from intersubband coherences. The dependencies of the injection currents on the excitation conditions, in particular, the photon energy are computed and discussed.

@article{Duc_Förstner_Meier_2010, title={Microscopic analysis of charge and spin photocurrents injected by circularly polarized one-color laser pulses in GaAs quantum wells}, volume={82}, DOI={10.1103/physrevb.82.115316}, number={11115316}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Duc, Huynh Thanh and Förstner, Jens and Meier, Torsten}, year={2010} }


Microscopic theoretical analysis of optically generated injection currents in semiconductor quantum wells

H.T. Duc, J. Förstner, T. Meier, in: Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIV, SPIE, 2010, pp. 76000S-76000S-9

A microscopic theory that describes injection currents in GaAs quantum wells is presented. 14 × 14 band k.p theory is used to compute the band structure including anisotropy and spin-orbit interaction. Transient injection currents are obtained via numerical solutions of the semiconductor Bloch equations. Depending on the growth direction of the considered quantum well system and the propagation and polarization directions of the incident light beam, it is possible to generate charge and/or spin photocurrents on ultrashort time scales. The dependence of the photocurrents on the excitation conditions is computed and discussed.

@inproceedings{Duc_Förstner_Meier_2010, series={SPIE Proceedings}, title={Microscopic theoretical analysis of optically generated injection currents in semiconductor quantum wells}, volume={7600}, DOI={10.1117/12.840388}, booktitle={Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIV}, publisher={SPIE}, author={Duc, Huynh Thanh and Förstner, Jens and Meier, Torsten}, editor={Song, Jin-Joo and Tsen, Kong-Thon and Betz, Markus and Elezzabi, Abdulhakem Y.}, year={2010}, pages={76000S-76000S–9}, collection={SPIE Proceedings} }


Tuning quantum-dot based photonic devices with liquid crystals

K.A. Piegdon, S. Declair, J. Förstner, T. Meier, H. Matthias, M. Urbanski, H. Kitzerow, D. Reuter, A.D. Wieck, A. Lorke, C. Meier, Optics Express (2010), 18(8), 7946

Microdisks made from GaAs with embedded InAs quantum dots are immersed in the liquid crystal 4-cyano-4’-pentylbiphenyl (5CB). The quantum dots serve as emitters feeding the optical modes of the photonic cavity. By changing temperature, the liquid crystal undergoes a phase transition from the isotropic to the nematic state, which can be used as an effective tuning mechanism of the photonic modes of the cavity. In the nematic state, the uniaxial electrical anisotropy of the liquid crystal molecules can be exploited for orienting the material in an electric field, thus externally controlling the birefringence of the material. Using this effect, an electric field induced tuning of the modes is achieved. Numerical simulations using the finite-differences time-domain (FDTD) technique employing an anisotropic dielectric medium allow to understand the alignment of the liquid crystal molecules on the surface of the microdisk resonator.

@article{Piegdon_Declair_Förstner_Meier_Matthias_Urbanski_Kitzerow_Reuter_Wieck_Lorke_et al._2010, title={Tuning quantum-dot based photonic devices with liquid crystals}, volume={18}, DOI={10.1364/oe.18.007946}, number={87946}, journal={Optics Express}, publisher={The Optical Society}, author={Piegdon, Karoline A. and Declair, Stefan and Förstner, Jens and Meier, Torsten and Matthias, Heiner and Urbanski, Martin and Kitzerow, Heinz-Siegfried and Reuter, Dirk and Wieck, Andreas D. and Lorke, Axel and et al.}, year={2010} }


Enhanced FDTD edge correction for nonlinear effects calculation

C. Classen, J. Förstner, T. Meier, R. Schuhmann, in: 2010 IEEE Antennas and Propagation Society International Symposium, IEEE, 2010

The electromagnetic field in the vicinity of sharp edges needs a special treatment in numeric calculation whenever accurate, fast converging results are necessary. One of the fundamental works concerning field singularities has been proposed in 1972 [1] and states that the electromagnetic energy density must be integrable over any finite domain, even if this domain contains singularities. It is shown, that the magnetic field H(, ϕ) and electric field E(, ϕ) are proportional to ∝ (t−1) for  → 0. The variable  is the distance to the edge and t has to fulfill the integrability condition and thus is restricted to 0 < t < 1. This result is often used to reduce the error corresponding to the singularity without increasing the numerical effort [2 - 5]. For this purpose, a correction factor K is estimated by inserting the proportionality into the wave equation. It is shown, that this method improves the accuracy of the result significantly, however the order of convergence is often not studied. In [4] a method to modify the material parameters in order to use analytic results to improve the numeric calculation is presented. In this contribution we will - inspired by the scheme given in [4] - develop a new method to estimate a correction factor for perfect conducting materials (PEC) and demonstrate the improvement of the results compared to the standard edge correction. Therefore analytic results (comparable to [1]) are consequently merged with the scheme in [4]. The main goal of this work is the calculation of the second harmonic generation (SHG) in the wave response of so-called metamaterials [6]. Frequently these structures contain sharp metallic edges with field singularities at the interfaces which have a strong impact on the SHG signals. Thus, an accurate simulation of singularities is highly important. However, the following approach can also be applied to many other setups, and one of them is shown in the example below.

@inproceedings{Classen_Förstner_Meier_Schuhmann_2010, title={Enhanced FDTD edge correction for nonlinear effects calculation}, DOI={10.1109/aps.2010.5562017}, number={11515155}, booktitle={2010 IEEE Antennas and Propagation Society International Symposium}, publisher={IEEE}, author={Classen, C and Förstner, Jens and Meier, Torsten and Schuhmann, R}, year={2010} }


Reversal of Coherently Controlled Ultrafast Photocurrents by Band Mixing in Undoped GaAs Quantum Wells

S. Priyadarshi, A.M. Racu, K. Pierz, U. Siegner, M. Bieler, H.T. Duc, J. Förstner, T. Meier, Physical Review Letters (2010), 104(21), 217401

It is demonstrated that valence-band mixing in GaAs quantum wells tremendously modifies electronic transport. A coherent control scheme in which ultrafast currents are optically injected into undoped GaAs quantum wells upon excitation with femtosecond laser pulses is employed. An oscillatory dependence of the injection current amplitude and direction on the excitation photon energy is observed. A microscopic theoretical analysis shows that this current reversal is caused by the coupling of the light- and heavy-hole bands and that the hole currents dominate the overall current response. These surprising consequences of band mixing illuminate fundamental physics as they are unique for experiments which are able to monitor electronic transport resulting from carriers with relatively large momenta.

@article{Priyadarshi_Racu_Pierz_Siegner_Bieler_Duc_Förstner_Meier_2010, title={Reversal of Coherently Controlled Ultrafast Photocurrents by Band Mixing in Undoped GaAs Quantum Wells}, volume={104}, DOI={10.1103/physrevlett.104.217401}, number={21217401}, journal={Physical Review Letters}, publisher={American Physical Society (APS)}, author={Priyadarshi, S. and Racu, A. M. and Pierz, K. and Siegner, U. and Bieler, M. and Duc, H. T. and Förstner, Jens and Meier, Torsten}, year={2010} }


Self-assembled quantum dots in a liquid-crystal-tunable microdisk resonator

K.A. Piegdon, M. Offer, A. Lorke, M. Urbanski, A. Hoischen, H. Kitzerow, S. Declair, J. Förstner, T. Meier, D. Reuter, A.D. Wieck, C. Meier, Physica E: Low-dimensional Systems and Nanostructures (2010), 42(10), pp. 2552-2555

GaAs-based semiconductor microdisks with high quality whispering gallery modes (Q44000) have been fabricated.A layer of self-organized InAs quantumdots (QDs) served as a light source to feed the optical modes at room temperature. In order to achieve frequency tuning of the optical modes, the microdisk devices have been immersed in 4 – cyano – 4´-pentylbiphenyl (5CB), a liquid crystal(LC) with a nematic phase below the clearing temperature of TC≈34°C .We have studied the device performance in the temperature rangeof T=20-50°C, in order to investigate the influence of the nematic–isotropic phase transition on the optical modes. Moreover,we havea pplied an AC electric field to the device,which leads in the nematic phase to a reorientation of the anisotropic dielectric tensor of the liquid crystal.This electrical anisotropy can be used to achieve electrical tunability of the optical modes.Using the finite-difference time domain (FDTD) technique with an anisotropic material model, we are able to describe the influence of the liquid crystal qualitatively.

@article{Piegdon_Offer_Lorke_Urbanski_Hoischen_Kitzerow_Declair_Förstner_Meier_Reuter_et al._2010, title={Self-assembled quantum dots in a liquid-crystal-tunable microdisk resonator}, volume={42}, DOI={10.1016/j.physe.2009.12.051}, number={10}, journal={Physica E: Low-dimensional Systems and Nanostructures}, publisher={Elsevier BV}, author={Piegdon, Karoline A. and Offer, Matthias and Lorke, Axel and Urbanski, Martin and Hoischen, Andreas and Kitzerow, Heinz-Siegfried and Declair, Stefan and Förstner, Jens and Meier, Torsten and Reuter, Dirk and et al.}, year={2010}, pages={2552–2555} }


Modeling excitonic line shapes in weakly disordered semiconductor nanostructures

I. Kuznetsova, N. Gőgh, J. Förstner, T. Meier, S.T. Cundiff, I. Varga, P. Thomas, Physical Review B (2010), 81(7), 075307

Excitonic spectra of weakly disordered semiconductor heterostructures are simulated on the basis of a one-dimensional tight-binding model. The influence of the length scale of weak disorder in quantum wells on the redshift of the excitonic peak and its linewidth is studied. By calculating two-dimensional Fouriertransform spectra we are able to determine the contribution of disorder to inhomogeneous and also to homogeneous broadenings separately. This disorder-induced dephasing is related to a Fano-type coupling and leads to contributions to the homogeneous linewidth that depends on energy within the inhomogeneously broadened line. The model includes heavy- and light-hole excitons and yields smaller inhomogeneous broadening for the light-hole exciton if compared to the heavy-hole exciton, which agrees qualitatively with the experiment.

@article{Kuznetsova_Gőgh_Förstner_Meier_Cundiff_Varga_Thomas_2010, title={Modeling excitonic line shapes in weakly disordered semiconductor nanostructures}, volume={81}, DOI={10.1103/physrevb.81.075307}, number={7075307}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Kuznetsova, I. and Gőgh, N. and Förstner, Jens and Meier, Torsten and Cundiff, S. T. and Varga, I. and Thomas, P.}, year={2010} }


Anticrossing of Whispering Gallery Modes in microdisk resonators embedded in an anisotropic environment

S. Declair, C. Meier, T. Meier, J. Förstner, Photonics and Nanostructures - Fundamentals and Applications (2010), 8(4), pp. 273-277

We numerically investigate the behavior of Whispering Gallery Modes (WGMs) in circularly shaped resonators like microdisks, with diameters in the range of optical vacuum wavelengths. The microdisk is embedded in an uniaxial anisotropic dielectric environment. By changing the optical anisotropy, one obtains spectral tunability of the optical modes. The degree of tunability strongly depends on the radial (azimuthal) mode order M (N). As the modes approach each other spectrally, anticrossing is observed, leading to a rearrangement of the optical states.

@article{Declair_Meier_Meier_Förstner_2010, title={Anticrossing of Whispering Gallery Modes in microdisk resonators embedded in an anisotropic environment}, volume={8}, DOI={10.1016/j.photonics.2010.03.002}, number={4}, journal={Photonics and Nanostructures - Fundamentals and Applications}, publisher={Elsevier BV}, author={Declair, S. and Meier, Cedrik and Meier, Torsten and Förstner, Jens}, year={2010}, pages={273–277} }


Theory of phonon-mediated relaxation in doped quantum dot molecules

A. Grodecka-Grad, J. Förstner, Physical Review B (2010), 81(11), 115305

A quantum dot molecule doped with a single electron in the presence of diagonal and off-diagonal carrierphonon couplings is studied by means of a nonperturbative quantum kinetic theory. The interaction with acoustic phonons by deformation potential and piezoelectric coupling is taken into account. We show that the phonon-mediated relaxation is fast on a picosecond time scale and is dominated by the usually neglected off-diagonal coupling to the lattice degrees of freedom leading to phonon-assisted electron tunneling. We show that in the parameter regime of current electrical and optical experiments, the microscopic non-Markovian theory has to be employed.

@article{Grodecka-Grad_Förstner_2010, title={Theory of phonon-mediated relaxation in doped quantum dot molecules}, volume={81}, DOI={10.1103/physrevb.81.115305}, number={11115305}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Grodecka-Grad, A. and Förstner, Jens}, year={2010} }


Phonon-mediated relaxation in doped quantum dot molecules

A. Grodecka-Grad, J. Förstner, Journal of Physics: Conference Series (2010), 245, 012035

We study a single quantum dot molecule doped with one electron in the presence of electron-phonon coupling. Both diagonal and off-diagonal interactions representing real and virtual processes with acoustic phonons via deformation potential and piezoelectric coupling are taken into account. We employ a non-perturbative quantum kinetic theory and show that the phonon-mediated relaxation is dominated by an electron tunneling on a picosecond time scale.A dependence of the relaxation on the temperature and the strength of the tunneling coupling is analyzed.

@article{Grodecka-Grad_Förstner_2010, title={Phonon-mediated relaxation in doped quantum dot molecules}, volume={245}, DOI={10.1088/1742-6596/245/1/012035}, number={012035}, journal={Journal of Physics: Conference Series}, publisher={IOP Publishing}, author={Grodecka-Grad, Anna and Förstner, Jens}, year={2010} }


2009

Generation of injection currents in (110)-oriented GaAs quantum wells: experimental observation and development of a microscopic theory

M. Bieler, K. Pierz, U. Siegner, P. Dawson, H.T. Duc, J. Förstner, T. Meier, in: Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIII, SPIE, 2009, pp. 721404-721404-13

We have experimentally investigated injection currents generated by all-optical excitation of GaAs/AlGaAs quantum wells excited with 130 fs optical pulses. The currents have been detected via free-space THz experiments at room temperature. Our experiments prove that Coulomb effects strongly influence injection currents. This becomes most prominently visible when exciting light-hole exciton transitions. At this photon energy we observe a pronounced phase shift of the current transients which is due to oppositely oriented heavy-hole and light-hole type contributions. We are currently developing a microscopic theory based on a 14×14 k.p model in combination with the semiconductor Bloch equations to describe the observed features quantitatively. The combined theoretical and experimental approach will allow us to analyze the influence of the bandstructure and interaction effects on the injection current amplitude and current dynamics.

@inproceedings{Bieler_Pierz_Siegner_Dawson_Duc_Förstner_Meier_2009, series={SPIE Proceedings}, title={Generation of injection currents in (110)-oriented GaAs quantum wells: experimental observation and development of a microscopic theory}, volume={7214}, DOI={10.1117/12.811841}, booktitle={Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIII}, publisher={SPIE}, author={Bieler, M. and Pierz, K. and Siegner, U. and Dawson, P. and Duc, H. T. and Förstner, Jens and Meier, Torsten}, editor={Tsen, Kong-Thon and Song, Jin-Joo and Betz, Markus and Elezzabi, Abdulhakem Y.}, year={2009}, pages={721404-721404–13}, collection={SPIE Proceedings} }


Anticrossing of Whispering Gallery Modes in Microdisk Resonators Embedded in a Liquid Crystal

J. Förstner, S. Declair, C. Meier, T. Meier, in: Theoretical and Computational Nanophotonics Tacona-Photonics, 2009, pp. 60-62

We numerically investigate Whispering Gallery Modes (WGM) in a subwavelength microdisk resonator [1] embedded in an uniaxial anisotropic liquid crystal environment. It is shown that the WGMs have anticrossing behavior when modes of different radial mode order M or azimuthal order N approach each other spectrally.

@inproceedings{Förstner_Declair_Meier_Meier_2009, series={AIP Conference Proceedings }, title={Anticrossing of Whispering Gallery Modes in Microdisk Resonators Embedded in a Liquid Crystal}, volume={1176}, DOI={10.1063/1.3253921}, number={1}, booktitle={Theoretical and Computational Nanophotonics Tacona-Photonics}, author={Förstner, Jens and Declair, S. and Meier, Cedrik and Meier, Torsten}, year={2009}, pages={60–62}, collection={AIP Conference Proceedings } }


Coupling Dynamics of Quantum Dots in a Liquid-Crystal-Tunable Microdisk Resonator

J. Förstner, C. Meier, K. Piegdon, S. Declair, A. Hoischen, M. Urbanski, T. Meier, H. Kitzerow, in: Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper NTuC2, 2009

We experimentally and theoretically investigate microdisk resonators with embedded quantum dots immersed in a liquid crystal in its nematic phase, showing the tunabililty of the photonic modes via external parameters like temperature or electric field.

@inproceedings{Förstner_Meier_Piegdon_Declair_Hoischen_Urbanski_Meier_Kitzerow_2009, title={Coupling Dynamics of Quantum Dots in a Liquid-Crystal-Tunable Microdisk Resonator}, DOI={10.1364/nlo.2009.ntuc2}, number={paper NTuC2}, booktitle={Advances in Optical Sciences Congress}, publisher={OSA Technical Digest (CD) (Optical Society of America, 2009), paper NTuC2}, author={Förstner, Jens and Meier, Cedrik and Piegdon, Karoline and Declair, Stefan and Hoischen, Andreas and Urbanski, Mark and Meier, Torsten and Kitzerow, Heinz-Siegfried}, year={2009} }


Indirect spin dephasing via charge-state decoherence in optical control schemes in quantum dots

A. Grodecka, P. Machnikowski, J. Förstner, Physical Review A (2009), 79(4), 042331

We demonstrate that an optically driven spin of a carrier in a quantum dot undergoes indirect dephasing via conditional optically induced charge evolution even in the absence of any direct interaction between the spin and its environment. A generic model for the indirect dephasing with a three-component system with spin, charge, and reservoir is proposed. This indirect decoherence channel is studied for the optical spin manipulation in a quantum dot with a microscopic description of the charge-phonon interaction taking into account its non-Markovian nature.

@article{Grodecka_Machnikowski_Förstner_2009, title={Indirect spin dephasing via charge-state decoherence in optical control schemes in quantum dots}, volume={79}, DOI={10.1103/physreva.79.042331}, number={4042331}, journal={Physical Review A}, publisher={American Physical Society (APS)}, author={Grodecka, A. and Machnikowski, P. and Förstner, Jens}, year={2009} }


Indirect Dephasing Channel for Optically Controlled Spin in a Single Quantum Dot

A. Grodecka, P. Machnikowski, J. Förstner, in: Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), 2009

We show that an optically driven carrier spin undergoes indirect dephasing even in the absence of spin-reservoir coupling and illustrate it for phonon-induced decoherence during optical spin rotation in a single quantum dot.

@inproceedings{Grodecka_Machnikowski_Förstner_2009, title={Indirect Dephasing Channel for Optically Controlled Spin in a Single Quantum Dot}, DOI={10.1364/nlo.2009.nma1}, number={NMA1}, booktitle={Advances in Optical Sciences Congress}, publisher={OSA Technical Digest (CD) (Optical Society of America, 2009)}, author={Grodecka, Anna and Machnikowski, Pawel and Förstner, Jens}, year={2009} }


2008

Theoretical study of phononassisted singlet-singlet relaxation in two-electron semiconductor quantum dot molecules

A. Grodecka, P. Machnikowski, J. Förstner, physica status solidi (c) (2008), 6(2), pp. 474-478

Phonon-assisted singlet-singlet relaxation in semiconductor quantum dot molecules is studied theoretically. Laterally coupled quantum dot structures doped with two electrons are considered. We take into account interaction with acoustic phonon modes via deformation potential and piezoelectric coupling. We show that piezoelectric mechanism for the considered system is of great importance and for some ranges of quantum dot molecule parameters is the dominant contribution to relaxation. It is shown that the phonon-assisted tunneling is much faster (down to ∼ 6 ps even at zero temperature) in comparison with other decoherence processes. The influence of Coulomb interaction is discussed and its consequences are indicated. We calculate the relaxation rates for GaAs quantum dot molecules and study the dependence on quantum dot size, distance and offset between the constituent quantum dots. In addition the temperature dependence of the tunneling rates is analyzed.

@article{Grodecka_Machnikowski_Förstner_2008, title={Theoretical study of phononassisted singlet-singlet relaxation in two-electron semiconductor quantum dot molecules}, volume={6}, DOI={10.1002/pssc.200880319}, number={2}, journal={physica status solidi (c)}, publisher={Wiley}, author={Grodecka, Anna and Machnikowski, Paweł and Förstner, Jens}, year={2008}, pages={474–478} }


Transition between different coherent light–matter interaction regimes analyzed by phase-resolved pulse propagation

T.H. zu Siederdissen, N.C. Nielsen, J. Kuhl, M. Schaarschmidt, J. Förstner, A. Knorr, G. Khitrova, H.M. Gibbs, S.W. Koch, H. Giessen, Optics Letters (2008), 30(11), 1384

We present phase-resolved pulse propagation measurements that allow us to fully describe the transition between several light–matter interaction regimes. The complete range from linear excitation to the breakdown of the photonic bandgap on to self-induced transmission and self-phase modulation is studied on a high-quality multiple-quantum-well Bragg structure. An improved fast-scanning cross-correlation frequency-resolved optical gating setup is applied to retrieve the pulse phase with an excellent signal-tonoise ratio. Calculations using the semiconductor Maxwell–Bloch equations show qualitative agreement with the experimental findings.

@article{zu Siederdissen_Nielsen_Kuhl_Schaarschmidt_Förstner_Knorr_Khitrova_Gibbs_Koch_Giessen_2008, title={Transition between different coherent light–matter interaction regimes analyzed by phase-resolved pulse propagation}, volume={30}, DOI={10.1364/ol.30.001384}, number={111384}, journal={Optics Letters}, publisher={The Optical Society}, author={zu Siederdissen, Tilman Höner and Nielsen, Nils C. and Kuhl, Jürgen and Schaarschmidt, Martin and Förstner, Jens and Knorr, Andreas and Khitrova, Galina and Gibbs, Hyatt M. and Koch, Stephan W. and Giessen, Harald}, year={2008} }


Phonon-assisted tunneling between singlet states in two-electron quantum dot molecules

A. Grodecka, P. Machnikowski, J. Förstner, Physical Review B (2008), 78(8), 085302

We study phonon-assisted electron tunneling in semiconductor quantum dot molecules. In particular, singletsinglet relaxation in a two-electron-doped structure is considered. The influence of Coulomb interaction is discussed via comparison with a single-electron system. We find that the relaxation rate reaches similar values in the two cases but the Coulomb interaction shifts the maximum rates toward larger separations between the dots. The difference in electron-phonon interaction between deformation potential and piezoelectric coupling is investigated. We show that the phonon-induced tunneling between two-electron singlet states is a fast process, taking place on the time scales of the order of a few tens of picoseconds.

@article{Grodecka_Machnikowski_Förstner_2008, title={Phonon-assisted tunneling between singlet states in two-electron quantum dot molecules}, volume={78}, DOI={10.1103/physrevb.78.085302}, number={8085302}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Grodecka, A. and Machnikowski, P. and Förstner, Jens}, year={2008} }


2007

Line narrowing and hole burning within the homogeneous linewidth: a new wave-mixing effect in two-level systems

J. Förstner, A. Knorr, M. Lindberg, S.W. Koch, Optics Letters (2007), 27(20), 1830

The interaction of strong low-area pulses with two-level systems shows absorption line narrowing and hole burning within the homogeneous linewidth as a result of nonlinear wave mixing. The wave mixing results from the two-level electronic saturation nonlinearity and occurs, depending on the sign of the pulse area, as a strong absorption enhancement or gain at the transition frequency of the two-level system for resonant excitation.

@article{Förstner_Knorr_Lindberg_Koch_2007, title={Line narrowing and hole burning within the homogeneous linewidth: a new wave-mixing effect in two-level systems}, volume={27}, DOI={10.1364/ol.27.001830}, number={201830}, journal={Optics Letters}, publisher={The Optical Society}, author={Förstner, Jens and Knorr, A. and Lindberg, M. and Koch, S. W.}, year={2007} }


2006

Optical Experiments on Second-Harmonic Generation with Metamaterials Composed of Split-Ring Resonators

M.W. Klein, C. Enkrich, M. Wegener, J. Förstner, J.V. Moloney, W. Hoyer, T. Stroucken, T. Meier, S.W. Koch, S. Linden, in: Photonic Metamaterials: From Random to Periodic, OSA, 2006

We study optical second-harmonic generation from planar arrays of magnetic split-ring resonators at 1.5 microns resonance wavelength. We obtain by far the largest signals when exciting the magnetic-dipole resonance.

@inproceedings{Klein_Enkrich_Wegener_Förstner_Moloney_Hoyer_Stroucken_Meier_Koch_Linden_2006, title={Optical Experiments on Second-Harmonic Generation with Metamaterials Composed of Split-Ring Resonators}, DOI={10.1364/meta.2006.tuc5}, number={TuC5}, booktitle={Photonic Metamaterials: From Random to Periodic}, publisher={OSA}, author={Klein, Matthias W. and Enkrich, Christian and Wegener, Martin and Förstner, Jens and Moloney, Jerome V. and Hoyer, Walter and Stroucken, Tineke and Meier, Torsten and Koch, Stephan W. and Linden, Stefan}, year={2006} }


Theory of ultrafast nonlinear optics of Coulomb-coupled semiconductor quantum dots: Rabi oscillations and pump-probe spectra

J. Danckwerts, K.J. Ahn, J. Förstner, A. Knorr, Physical Review B (2006), 73(16), pp. 165318-165318-18

We investigate the optical properties of a Coulomb-coupled double-quantum dot system excited by coherent light pulses. Basic effects of Coulomb coupling regarding linear and nonlinear optical processes are discussed. By numerically solving the Heisenberg equation of motion we are able to present the temporal evolution of the system’s density matrix for a wide range of coupling parameters. The two main coupling effects in dipole approximation, biexcitonic shift and Förster energy transfer, are investigated and their qualitative and quantitative influence on absorption spectra, Rabi oscillations, and single- and two-pulse excitation is discussed. We present simulated differential transmission spectra to allow for comparison with recent experimental studies.

@article{Danckwerts_Ahn_Förstner_Knorr_2006, title={Theory of ultrafast nonlinear optics of Coulomb-coupled semiconductor quantum dots: Rabi oscillations and pump-probe spectra}, volume={73}, DOI={10.1103/physrevb.73.165318}, number={16}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Danckwerts, J. and Ahn, K. J. and Förstner, Jens and Knorr, A.}, year={2006}, pages={165318-165318–18} }


Optical experiments on second-harmonic generation from metamaterials consisting of split-ring resonators

M.W. Klein, C. Enkrich, M. Wegener, J. Förstner, J.V. Moloney, W. Hoyer, T. Stroucken, T. Meier, S.W. Koch, S. Linden, in: 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, IEEE, 2006

We discuss second-harmonic generation experiments on planar arrays of magnetic split-ring resonators, using 150 fs pulses at 1.5 mum wavelength. Lithographic tuning reveals by far the largest signals when exciting the magnetic-dipole resonance.

@inproceedings{Klein_Enkrich_Wegener_Förstner_Moloney_Hoyer_Stroucken_Meier_Koch_Linden_2006, title={Optical experiments on second-harmonic generation from metamaterials consisting of split-ring resonators}, DOI={10.1109/cleo.2006.4629006}, number={QThE3}, booktitle={2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference}, publisher={IEEE}, author={Klein, M. W. and Enkrich, C. and Wegener, M. and Förstner, Jens and Moloney, J. V. and Hoyer, W. and Stroucken, T. and Meier, Torsten and Koch, S. W. and Linden, S.}, year={2006} }


Interplay of electron-phonon and Coulomb interaction in semiconductor quantum dots

J. Förstner, A. Knorr, J.V. Moloney, physica status solidi (c) (2006), 3(7), pp. 2389-2392

We theoretically study the biexciton-phonon interaction in strongly confined semiconductor quantum dots. For spectrally narrow single-pulse excitation generation of biexcitonic occupations is only possible via a two-photon cascade, which exhibits renormalized Rabi oscillations and spectrally compressed phononsidebands.

@article{Förstner_Knorr_Moloney_2006, title={Interplay of electron-phonon and Coulomb interaction in semiconductor quantum dots}, volume={3}, DOI={10.1002/pssc.200668111}, number={7}, journal={physica status solidi (c)}, publisher={Wiley}, author={Förstner, Jens and Knorr, A. and Moloney, J. V.}, year={2006}, pages={2389–2392} }


2005

Temporal and Spatial Pulse Compression in a Nonlinear Defocusing Material

N.C. Nielsen, T. zu Höner Siederdissen, J. Kuhl, M. Schaarschmidt, J. Förstner, A. Knorr, S.W. Koch, H. Giessen, in: Springer Series in Chemical Physics, Springer Berlin Heidelberg, 2005, pp. 19-21

We investigate the spatiotemporal characteristics of subpicosecond pulse propagation in the nonlinear defocusing regime below the band edge of bulk GaAs. We observe temporal and spatial pulse compression and instabilities.

@inbook{Nielsen_zu Höner Siederdissen_Kuhl_Schaarschmidt_Förstner_Knorr_Koch_Giessen_2005, place={Berlin, Heidelberg}, title={Temporal and Spatial Pulse Compression in a Nonlinear Defocusing Material}, DOI={10.1007/3-540-27213-5_5}, booktitle={Springer Series in Chemical Physics}, publisher={Springer Berlin Heidelberg}, author={Nielsen, N. C. and zu Höner Siederdissen, T. and Kuhl, J. and Schaarschmidt, M. and Förstner, Jens and Knorr, A. and Koch, S. W. and Giessen, H.}, year={2005}, pages={19–21} }


Resonance fluorescence of semiconductor quantum dots: Signatures of the electron-phonon interaction

K.J. Ahn, J. Förstner, A. Knorr, Physical Review B (2005), 71(15), 153309

Using a fully quantized description of strongly confined electrons interacting with acoustic phonons and the photon field, the nonstationary resonance-fluorescence spectra of a semiconductor quantum dot are investigated. For excitation pulses with durations approaching typical electron-phonon scattering times, the virtual quantum processes yield an observable electron-phonon sideband broadening.

@article{Ahn_Förstner_Knorr_2005, title={Resonance fluorescence of semiconductor quantum dots: Signatures of the electron-phonon interaction}, volume={71}, DOI={10.1103/physrevb.71.153309}, number={15153309}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Ahn, K. J. and Förstner, Jens and Knorr, A.}, year={2005} }


Femtosecond Transfer Dynamics of Photogenerated Electrons at a Surface Resonance of Reconstructed InP(100)

L. Töben, L. Gundlach, R. Ernstorfer, R. Eichberger, T. Hannappel, F. Willig, A. Zeiser, J. Förstner, A. Knorr, P.H. Hahn, W.G. Schmidt, Physical Review Letters (2005), 94(6), 067601

Time-dependent two-photon photoemission spectra are used to resolve the femtosecond dynamics of hot electrons at the energetically lowest surface resonance of reconstructed InP(100). Two different cases are studied, where electrons either are lifted into the surface resonance via a direct optical transition or are captured from bulk states. These data are the first of this kind recorded with a time resolution below 70 fs. The microscopic analysis shows that electron-phonon scattering is a major mechanism for electron transfer between surface and bulk states.

@article{Töben_Gundlach_Ernstorfer_Eichberger_Hannappel_Willig_Zeiser_Förstner_Knorr_Hahn_et al._2005, title={Femtosecond Transfer Dynamics of Photogenerated Electrons at a Surface Resonance of Reconstructed InP(100)}, volume={94}, DOI={10.1103/physrevlett.94.067601}, number={6067601}, journal={Physical Review Letters}, publisher={American Physical Society (APS)}, author={Töben, L. and Gundlach, L. and Ernstorfer, R. and Eichberger, R. and Hannappel, T. and Willig, F. and Zeiser, A. and Förstner, Jens and Knorr, A. and Hahn, P. H. and et al.}, year={2005} }


Phase Evolution of Solitonlike Optical Pulses during Excitonic Rabi Flopping in a Semiconductor

N.C. Nielsen, T.H. zu Siederdissen, J. Kuhl, M. Schaarschmidt, J. Förstner, A. Knorr, H. Giessen, Physical Review Letters (2005), 94(5), 057406

We demonstrate that the temporal pulse phase remains essentially unaltered before separate phase characteristics are developed when propagating high-intensity pulses coherently on the exciton resonance of an optically thick semiconductor. This behavior is a clear manifestation of self-induced transmission and pulse breakup into solitonlike pulses due to Rabi flopping of the carrier density. Experiments using a novel fast-scan cross-correlation frequency-resolved optical gating (XFROG) method are in good agreement with numerical calculations based on the semiconductor Bloch equations.

@article{Nielsen_zu Siederdissen_Kuhl_Schaarschmidt_Förstner_Knorr_Giessen_2005, title={Phase Evolution of Solitonlike Optical Pulses during Excitonic Rabi Flopping in a Semiconductor}, volume={94}, DOI={10.1103/physrevlett.94.057406}, number={5057406}, journal={Physical Review Letters}, publisher={American Physical Society (APS)}, author={Nielsen, N. C. and zu Siederdissen, T. Höner and Kuhl, J. and Schaarschmidt, M. and Förstner, Jens and Knorr, A. and Giessen, H.}, year={2005} }


Kinetic theory of the electron transport in the two photon photo emission at semiconductor surfaces

N. Bucking, A. Zeiser, J. Förstner, A. Knorr, in: 2005 Quantum Electronics and Laser Science Conference, IEEE, 2005, pp. 1929-1931

A theoretical description of ultrafast phonon induced electronic transport between surface and bulk states after optical excitation is presented. In particular, the influence of the electron transfer processes on two photon photo emission is evaluated.

@inproceedings{Bucking_Zeiser_Förstner_Knorr_2005, title={Kinetic theory of the electron transport in the two photon photo emission at semiconductor surfaces}, DOI={10.1109/qels.2005.1549331}, booktitle={2005 Quantum Electronics and Laser Science Conference}, publisher={IEEE}, author={Bucking, N. and Zeiser, A. and Förstner, Jens and Knorr, A.}, year={2005}, pages={1929–1931} }


Ultrafast quantum kinetics of semiconductor intersubband transitions: polaron signatures and dephasing dynamics

S. Butscher, J. Förstner, I. Waldmuller, A. Knorr, in: 2005 Quantum Electronics and Laser Science Conference, IEEE, 2005, pp. 640-642

The ultrafast intersubband dynamics in a semiconductor quantum well subband system is investigated theoretically. Non-Markovian electron-phonon interaction leads to polaron formation and enhanced dephasing.

@inproceedings{Butscher_Förstner_Waldmuller_Knorr_2005, title={Ultrafast quantum kinetics of semiconductor intersubband transitions: polaron signatures and dephasing dynamics}, DOI={10.1109/qels.2005.1548881}, booktitle={2005 Quantum Electronics and Laser Science Conference}, publisher={IEEE}, author={Butscher, S. and Förstner, Jens and Waldmuller, I. and Knorr, A.}, year={2005}, pages={640–642} }


Quantum information processing using Coulomb-coupled quantum dots

J. Danckwerts, J. Förstner, A. Knorr, in: AIP Conference Proceedings, AIP, 2005

A system of two quantum dots coupled by dipole‐dipole interaction is investigated within a density matrix approach. We compute the temporal evolution of the system in the linear and nonlinear optical regime and discuss the possibility of performing basic quantum information gates. The influence of the Förster energy transfer on Rabi oscillations is discussed.

@inproceedings{Danckwerts_Förstner_Knorr_2005, title={Quantum information processing using Coulomb-coupled quantum dots}, volume={772}, DOI={10.1063/1.1994668}, number={1465}, booktitle={AIP Conference Proceedings}, publisher={AIP}, author={Danckwerts, J. and Förstner, Jens and Knorr, A.}, year={2005} }


Electromagnetic field structure and normal mode coupling in photonic crystal nanocavities

C. Dineen, J. Förstner, A. Zakharian, J. Moloney, S. Koch, Optics Express (2005), 13(13), 4980

The electromagnetic field of a high-quality photonic crystal nanocavity is computed using the finite difference time domain method. It is shown that a separatrix occurs in the local energy flux discriminating between predominantly near and far field components. Placing a two-level atom into the cavity leads to characteristic field modifications and normalmode splitting in the transmission spectra.

@article{Dineen_Förstner_Zakharian_Moloney_Koch_2005, title={Electromagnetic field structure and normal mode coupling in photonic crystal nanocavities}, volume={13}, DOI={10.1364/opex.13.004980}, number={134980}, journal={Optics Express}, publisher={The Optical Society}, author={Dineen, C. and Förstner, Jens and Zakharian, A.R. and Moloney, J.V. and Koch, S.W.}, year={2005} }


Microscopic theory of electron dynamics and time-resolved two-color two-photon photoemission at semiconductor surfaces

A. Zeiser, N. Bücking, J. Förstner, A. Knorr, Physical Review B (2005), 71(24), 245309

A microscopic description based on the density matrix formalism is developed to describe the dynamics of photoemission of hot electrons at semiconductor surfaces, including the interaction of bulk and surface states. The equations of motion for the electronic occupations and transitions include the interaction with arbitrary optical fields as well as the electron-phonon coupling. Model wave functions are used to qualitatively describe the bulk-surface dynamics and the subsequent time resolved two-photon photoemission s2PPEd spectra. Our results suggest that it is possible to extract energetic and temporal information of the underlying dynamical occupations of the intermediate states from the 2PPE spectra.

@article{Zeiser_Bücking_Förstner_Knorr_2005, title={Microscopic theory of electron dynamics and time-resolved two-color two-photon photoemission at semiconductor surfaces}, volume={71}, DOI={10.1103/physrevb.71.245309}, number={24245309}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Zeiser, A. and Bücking, N. and Förstner, Jens and Knorr, A.}, year={2005} }


Normal Mode Coupling in Photonic Crystal Nanocavities

J. Förstner, C. Dineen, A. Zakharian, J.V. Moloney, S.W. Koch, in: Frontiers in Optics, OSA, 2005

We numerically investigate strong light-matter interaction and normal mode coupling/splitting in a system composed of a single two-level atom and the localized mode of a small mode volume photonic crystal nanocavity.

@inproceedings{Förstner_Dineen_Zakharian_Moloney_Koch_2005, title={Normal Mode Coupling in Photonic Crystal Nanocavities}, DOI={10.1364/fio.2005.fwc2}, number={FWC2}, booktitle={Frontiers in Optics}, publisher={OSA}, author={Förstner, Jens and Dineen, Colm and Zakharian, A.R. and Moloney, Jerome V. and Koch, Stephan W.}, year={2005} }


Ultrafast electron-phonon interaction of intersubband transitions: Quantum kinetics from adiabatic following to Rabi-oscillations

S. Butscher, J. Förstner, I. Waldmüller, A. Knorr, Physical Review B (2005), 72(4), pp. 045314-045314-4

The interaction of electrons with LO phonons provides an important mechanism of optical dephasing and carrier scattering for the two-dimensional electron gas in semiconductor quantum wells. In this paper, the corresponding ultrafast nonlinearities for off-resonant and resonant intersubband excitations are investigated. Quantum kinetic effects of the electron-phonon interaction and the corresponding violation of the microscopic energy conservation yield a qualitative different picture compared to the standard Markovian theory, if the phonon energy is larger than the intersubband-gap energy.

@article{Butscher_Förstner_Waldmüller_Knorr_2005, title={Ultrafast electron-phonon interaction of intersubband transitions: Quantum kinetics from adiabatic following to Rabi-oscillations}, volume={72}, DOI={10.1103/physrevb.72.045314}, number={4}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Butscher, Stefan and Förstner, Jens and Waldmüller, Inès and Knorr, Andreas}, year={2005}, pages={045314-045314–4} }


Femtosecond Transfer Dynamics of Photogenerated Electrons at a Surface Resonance of Reconstructed InP(100)

L. Töben, L. Gundlach, R. Ernstorfer, R. Eichberger, T. Hannappel, F. Willig, A. Zeiser, J. Förstner, A. Knorr, P.H. Hahn, W.G. Schmidt, Physical Review Letters (2005), 94, pp. 067601

@article{Töben_Gundlach_Ernstorfer_Eichberger_Hannappel_Willig_Zeiser_Förstner_Knorr_Hahn_et al._2005, title={Femtosecond Transfer Dynamics of Photogenerated Electrons at a Surface Resonance of Reconstructed InP(100)}, volume={94}, DOI={10.1103/physrevlett.94.067601}, journal={Physical Review Letters}, author={Töben, L. and Gundlach, L. and Ernstorfer, R. and Eichberger, R. and Hannappel, T. and Willig, F. and Zeiser, A. and Förstner, Jens and Knorr, A. and Hahn, P. H. and et al.}, year={2005}, pages={067601} }


2004

Dynamics of the phonon-induced electron transfer between semiconductor bulk and surface states

A. Zeiser, N. Bücking, J. Götte, J. Förstner, P. Hahn, W.G. Schmidt, A. Knorr, physica status solidi (b) (2004), 241(12), pp. R60-R62

The coupling of surface and bulk states at semiconductor surfaces through electron–phonon interaction is discussed. The governing equations are derived from a microscopic theory in the framework of the density matrix theory. To gain a first insight, model wave functions are used to simulate the dynamics of nonequilibrium electron distributions in three- and two-dimensional states, coupled by Fröhlich interaction. Typical time scales for the coupling are found to be in the order of few hundreds of femtoseconds.

@article{Zeiser_Bücking_Götte_Förstner_Hahn_Schmidt_Knorr_2004, title={Dynamics of the phonon-induced electron transfer between semiconductor bulk and surface states}, volume={241}, DOI={10.1002/pssb.200409060}, number={12}, journal={physica status solidi (b)}, publisher={Wiley}, author={Zeiser, Andreas and Bücking, Norbert and Götte, Jörg and Förstner, Jens and Hahn, Patrick and Schmidt, Wolf Gero and Knorr, Andreas}, year={2004}, pages={R60–R62} }


Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas

I. Waldmüller, J. Förstner, S. Lee, A. Knorr, M. Woerner, K. Reimann, R.A. Kaindl, T. Elsaesser, R. Hey, K.H. Ploog, Physical Review B (2004), 69(20)

@article{Waldmüller_Förstner_Lee_Knorr_Woerner_Reimann_Kaindl_Elsaesser_Hey_Ploog_2004, title={Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas}, volume={69}, DOI={10.1103/physrevb.69.205307}, number={20}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Waldmüller, I. and Förstner, Jens and Lee, S.-C. and Knorr, A. and Woerner, M. and Reimann, K. and Kaindl, R. A. and Elsaesser, T. and Hey, R. and Ploog, K. H.}, year={2004} }


Light Propagation and Many-Particle Effects in Semiconductor Nanostructures

J. Förstner, 2004

In dieser Arbeit wird eine Theorie vorgestellt, welche die quantenmechanische Vielteilchenphysik der Licht-Materie Wechselwirkung in Halbleiternanostrukturen beschreibt. Diese mikroskopische Beschreibung wird durch Kombination eines allgemeinen Dichtematrixansatzes mit speziellen Methoden zur Auswertung der Maxwellgleichungen wie der zeitaufgelösten Finite-Differenzen-Methode (FDTD) erreicht. Die Theorie wird auf verschiedene physikalische Situationen angewendet, wie z.B. Lichtausbreitung in Volumenhalbleitern, Interband- und Intersubbandübergänge in Quantenfilmstrukturen und optische Anregung von Quantenpunkten. Der Fokus liegt dabei auf der Beschreibung der linearen und nichtlinearen Antwort des Vielteilchensystems und seiner Ankopplung an das elektromagnetische Feld. In diesem Zusammenhang wird sowohl die Erzeugung als auch der Zerfall von optischen Anregungen untersucht, indem verschiedene Kopplungsmechanismen wie Elektron-Phonon-, Elektron-Photon- und Elektron-Elektron-Wechselwirkung berücksichtigt werden. Im Bereich der linearen Optik, also für Anregung mit geringer Intensität, ermöglicht die Theorie die Berechnung von Absorptionsspektren. Verschiedene Effekte in linearer Optik werden in dieser Arbeit untersucht und beschrieben: Linienaufspaltung durch Polaritonen im Volumenmaterial, Zunahme der Linienbreite bei Intersubbandübergängen verursacht durch Elektron-Elektron- und Elektron- Phonon-Streuung in einzelnen Quantenfilmen, Bildung einer optischen Bandlücke durch starke radiative Kopplung in Vielfilmstrukturen in Bragg-Geometrie, Phononenseitenbänder verursacht durch quantenkinetische Effekte in einzelnen Quantenpunkten und schliesslich Superradianz und Interferenzeffekte in Quantenpunktgittern. Bei nichtlinearer Anregung treten Dichte-Rabiflops als fundamentale Prozesse in allen betrachteten Systemen auf und können als kohärente Be- und Entvölkerung von quantenmechanischen Zuständen beobachtet werden. Der Einfluss von starker Lichtkopplung und verschiedenen Wechselwirkungen auf dynamische Größen wie die Besetzung wird untersucht. Bei nichtlinearer Propagation, bei der sich ein starker Lichtpuls über längere Strecken in einem System bewegt, wird selbstinduzierte Verstärkung der Transmission näher betrachtet. Des weiteren werden von der Coulombwechselwirkung verursachte nichtlineare Effekte wie exzitoninduziertes Dephasieren in Volumenmaterial und verschränkte Zustände in Quantenpunkten untersucht, die einen Zusammenbruch der Hartree-Fock- Näherung darstellen. Zusammenfassend werden in dieser Arbeit verschiedene lineare und nichtlineare optische Effekte in Halbleiternanostrukturen verschiedener Dimensionalität mit Hilfe einer allgemeinen Theorie, die einen Dichtematrixansatz mit den Maxwellschen Gleichungen kombiniert, untersucht.

@book{Förstner_2004, title={Light Propagation and Many-Particle Effects in Semiconductor Nanostructures}, DOI={10.14279/depositonce-999}, author={Förstner, Jens}, year={2004} }


Linear and nonlinear pulse propagation in a multiple-quantum-well photonic crystal

N.C. Nielsen, J. Kuhl, M. Schaarschmidt, J. Förstner, A. Knorr, S.W. Koch, G. Khitrova, H.M. Gibbs, H. Giessen, Physical Review B (2004), 70(7), 075306

We investigate the temporal and spectral properties of subpicosecond pulses transmitted on the heavy-hole exciton transition through a multiple-quantum-well Bragg structure, exhibiting a one-dimensional photonic band gap. At low light intensities, a temporal propagation beating is observed. This beating is strongly dependent on the optical dephasing time T2 which is dominated by the radiative interwell coupling. In an intermediate intensity regime, the Pauli-blocking nonlinearity leads to gradual suppression of the photonic band gap and vanishing of the linear propagation beating. For highly nonlinear excitation, we find signatures of selfinduced transmission due to Rabi flopping and adiabatic following of the carrier density. Numerical simulations using the semiconductor Maxwell-Bloch equations are in excellent agreement with the experimental data up to intensities for which higher many-particle correlations become more important and self-phase modulation occurs in the sample substrate.

@article{Nielsen_Kuhl_Schaarschmidt_Förstner_Knorr_Koch_Khitrova_Gibbs_Giessen_2004, title={Linear and nonlinear pulse propagation in a multiple-quantum-well photonic crystal}, volume={70}, DOI={10.1103/physrevb.70.075306}, number={7075306}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Nielsen, N. C. and Kuhl, J. and Schaarschmidt, M. and Förstner, Jens and Knorr, A. and Koch, S. W. and Khitrova, G. and Gibbs, H. M. and Giessen, H.}, year={2004} }


Subpicosecond spatiotemporal pulse compression in a nonlinear defocusing material

N.C. Nielsen, T.H.z. Siederdissen, J. Kuhl, M. Schaarschmidt, J. Förstner, A. Knorr, S.W.. Koch, H.. Giessen, in: International Conference on Ultrafast Phenomena 2004, Technical Digest (CD) (Optical Society of America, 2004), 2004

We demonstrate temporal and spatial pulse compression and modulational instabilities in the nonlinear defocusing regime near the band edge of bulk GaAs. Experiment and theory show that spatiotemporal coupling is responsible for these surprising phenomena.

@inproceedings{Nielsen_Siederdissen_Kuhl_Schaarschmidt_Förstner_Knorr_Koch_Giessen_2004, title={Subpicosecond spatiotemporal pulse compression in a nonlinear defocusing material}, number={FA8}, booktitle={International Conference on Ultrafast Phenomena 2004}, publisher={Technical Digest (CD) (Optical Society of America, 2004)}, author={Nielsen, Nils. C. and Siederdissen, Tilmann H. zu and Kuhl, Jürgen and Schaarschmidt, Martin and Förstner, Jens and Knorr, Andreas and Koch, Stephan W. and Giessen, Harald }, year={2004} }


Temporal phase evolution during excitonic Rabi flopping in semiconductors

T. Höner zu Siederdissen, N.C. Nielsen, J. Kuhl, J. Förstner, A. Knorr, H. Giessen, in: International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA, 2004

Theoretically and experimentally, we investigate temporal phase evolution during Rabi-flopping on the A-exciton resonance in CdSe using a novel fast-scanning XFROG method and observe phase changes smaller than π/2 compared to the slightly-chirped input pulse.

@inproceedings{Höner zu Siederdissen_Nielsen_Kuhl_Förstner_Knorr_Giessen_2004, title={Temporal phase evolution during excitonic Rabi flopping in semiconductors}, DOI={10.1364/iqec.2004.imb3}, number={IMB3}, booktitle={International Quantum Electronics Conference and Photonic Applications Systems Technologies}, publisher={OSA}, author={Höner zu Siederdissen, Tilman and Nielsen, Nils Christian. and Kuhl, Jürgen and Förstner, Jens and Knorr, Andreas and Giessen, Harald}, year={2004} }


Temporal and spatial compression of near-resonant pulses in a nonlinear defocusing semiconductor

N.C. Nielsen, J. Kuhl, M.. Schaarschmidt, J. Förstner, A. Knorr, S.W. Koch, H.. Giessen, in: Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), 2004

The coupled spatiotemporal characteristics of subpicosecond pulses propagating in the nonlinear defocusing regime near the band edge of bulk GaAs are investigated experimentally and theoretically. We demonstrate pulse compression both in time and transverse space.

@inproceedings{Nielsen_Kuhl_Schaarschmidt_Förstner_Knorr_Koch_Giessen_2004, title={Temporal and spatial compression of near-resonant pulses in a nonlinear defocusing semiconductor }, number={CTuP30}, booktitle={Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies}, publisher={Technical Digest (CD) (Optical Society of America, 2004)}, author={Nielsen, Nils C. and Kuhl, Jürgen and Schaarschmidt, Martin and Förstner, Jens and Knorr, Andreas and Koch, Stephan W. and Giessen, Harald }, year={2004} }


Nonlinear light pulse propagation in Bragg-periodic multiple semiconductor quantum well samples: ultrafast switching of a resonant photonic band gap

M. Schaarschmidt, J. Förstner, A. Knorr, J.P. Prineas, N.C. Nielsen, J. Kuhl, G. Kithrova, H.M. Gibbs, H. Giessen, S.W. Koch, in: Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA, 2004

We investigate theoretically the ultrafast nonlinear suppression of the resonant photonic band gap by strong laser pulses in semiconductor multiple qnantum wells. We achieve good agreement with our measurements on reflection samples.

@inproceedings{Schaarschmidt_Förstner_Knorr_Prineas_Nielsen_Kuhl_Kithrova_Gibbs_Giessen_Koch_2004, title={Nonlinear light pulse propagation in Bragg-periodic multiple semiconductor quantum well samples: ultrafast switching of a resonant photonic band gap}, DOI={10.1364/iqec.2004.iwa3}, number={IWA3}, booktitle={Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies}, publisher={OSA}, author={Schaarschmidt, Martin and Förstner, Jens and Knorr, Andreas and Prineas, John P. and Nielsen, Nils C. and Kuhl, Jürgen and Kithrova, Galina and Gibbs, Hyatt M. and Giessen, Harald and Koch, Stephan W.}, year={2004} }


Self-consistent Projection Operator Theory of Intersubband Absorbance in Semiconductor Quantum Wells

I. Waldmüller, J. Förstner, A.. Knorr, in: Nonequilibrium Physics at Short Time Scales, Springer Berlin Heidelberg, 2004

Due to their many-particle character and their application in quantum cascade lasers, optical intersubband excitations in semiconductor quantum wells have become the focus of many recent publications [1,2]. In samples of high quality, intrinsic processes like electron-electron and electron-phonon many particle correlations determine the basic optical and transport properties such as lineshape and ultrafast dynamics. At the same time, intersubband excitations allow the direct investigation of dynamical properties of an important model system of many particle physics - the two-dimensional electron gas. We here present a microscopic theory for the intersubband dynamics and absorption. The calculation of absorption spectra of MQW systems is in principle composed of two parts: the determination of the polarization in a single quantum well within a density matrix approach as the source of electromagnetic radiation (Fig. 1a) and the calculation of the generated fields in the geometry of interest (Fig. 1b) within a Green's function approach [3,4]. We will here focus on the so-called single-pass geometry (cf. Fig. 1b, [5]).

@inbook{Waldmüller_Förstner_Knorr_2004, place={Berlin, Heidelberg}, title={Self-consistent Projection Operator Theory of Intersubband Absorbance in Semiconductor Quantum Wells}, DOI={10.1007/978-3-662-08990-3}, booktitle={Nonequilibrium Physics at Short Time Scales}, publisher={Springer Berlin Heidelberg}, author={Waldmüller, Ines and Förstner, Jens and Knorr, Andreas }, editor={Morawetz, KlausEditor}, year={2004} }


Polaron signatures in the line shape of semiconductor ;intersubband transitions: quantum kinetics of the electron–phonon interaction

S. Butscher, J. Förstner, I. Waldmüller, A. Knorr, physica status solidi (b) (2004), 241(11), pp. R49-R51

We present a theory of the optical line shape of coherent intersubband transitions in a semiconductor quantum well, considering non-Markovian LO-phonon scattering as major broadening mechanism. We show that a quantum kinetic approach leads to additional polaron resonances and a resonance enhancement for gap energies close to the phonon energy.

@article{Butscher_Förstner_Waldmüller_Knorr_2004, title={Polaron signatures in the line shape of semiconductor ;intersubband transitions: quantum kinetics of the electron–phonon interaction}, volume={241}, DOI={10.1002/pssb.200409053}, number={11}, journal={physica status solidi (b)}, publisher={Wiley}, author={Butscher, S. and Förstner, Jens and Waldmüller, I. and Knorr, A.}, year={2004}, pages={R49–R51} }


Adiabatically driven electron dynamics in a resonant photonic band gap: Optical switching of a Bragg periodic semiconductor

M. Schaarschmidt, J. Förstner, A. Knorr, J.P. Prineas, N.C. Nielsen, J. Kuhl, G. Khitrova, H.M. Gibbs, H. Giessen, S.W. Koch, Physical Review B (2004), 70(23), 233302

The adiabatic driving of the resonant electron dynamics in a one-dimensional resonant photonic band gap is proposed as an optical mechanism for nonlinear ultrafast switching. Pulsed excitation inside the photonic gap results in an ultrafast suppression and recovery of the gap. This behavior results from the adiabatic carrier dynamics due to rapid radiative damping inside the band gap.

@article{Schaarschmidt_Förstner_Knorr_Prineas_Nielsen_Kuhl_Khitrova_Gibbs_Giessen_Koch_2004, title={Adiabatically driven electron dynamics in a resonant photonic band gap: Optical switching of a Bragg periodic semiconductor}, volume={70}, DOI={10.1103/physrevb.70.233302}, number={23233302}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Schaarschmidt, Martin and Förstner, Jens and Knorr, Andreas and Prineas, John P. and Nielsen, Nils C. and Kuhl, Jürgen and Khitrova, Galina and Gibbs, Hyatt M. and Giessen, Harald and Koch, Stephan W.}, year={2004} }


Dynamics of the phonon-induced electron transfer between semiconductor bulk and surface states

A. Zeiser, N. Bücking, J. Götte, J. Förstner, P. Hahn, W.G. Schmidt, A. Knorr, physica status solidi (b) (2004), 241(12), pp. R60-R62

@article{Zeiser_Bücking_Götte_Förstner_Hahn_Schmidt_Knorr_2004, title={Dynamics of the phonon-induced electron transfer between semiconductor bulk and surface states}, volume={241}, DOI={10.1002/pssb.200409060}, number={12}, journal={physica status solidi (b)}, author={Zeiser, Andreas and Bücking, Norbert and Götte, Jörg and Förstner, Jens and Hahn, Patrick and Schmidt, Wolf Gero and Knorr, Andreas}, year={2004}, pages={R60–R62} }


2003

Phonon-Assisted Damping of Rabi Oscillations in Semiconductor Quantum Dots

J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Physical Review Letters (2003), 91(12), pp. 127401

@article{Förstner_Weber_Danckwerts_Knorr_2003, title={Phonon-Assisted Damping of Rabi Oscillations in Semiconductor Quantum Dots}, volume={91}, DOI={10.1103/physrevlett.91.127401}, number={12}, journal={Physical Review Letters}, publisher={American Physical Society (APS)}, author={Förstner, Jens and Weber, C. and Danckwerts, J. and Knorr, A.}, year={2003}, pages={127401} }


Self-induced transparency in InGaAs quantum dot waveguides

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R.L. Sellin, D. Ouyang, D. Bimberg, physica status solidi (c) (2003)(5), pp. 1548-1551

We present the experimental observation and the theoretical modelling of self-induced transparency signatures such as nonlinear transmission, pulse retardation and reshaping for subpicosecond pulse propagation in a 2 mm-long InGaAs quantum-dot ridge waveguide at 10 K. The measurements were obtained using a cross-correlation frequency resolved optical gating technique which allows us to retrieve the field amplitude of the propagating pulses.

@article{Schneider_Borri_Langbein_Woggon_Förstner_Knorr_Sellin_Ouyang_Bimberg_2003, title={Self-induced transparency in InGaAs quantum dot waveguides}, volume={0}, DOI={10.1002/pssc.200303228}, number={5}, journal={physica status solidi (c)}, publisher={Wiley}, author={Schneider, S. and Borri, P. and Langbein, W. and Woggon, U. and Förstner, Jens and Knorr, A. and Sellin, R. L. and Ouyang, D. and Bimberg, D.}, year={2003}, pages={1548–1551} }


Phonon-induced damping of Rabi oscillations in semiconductor quantum dots

J. Förstner, C. Weber, J. Danckwerts, A. Knorr, physica status solidi (b) (2003), 238(3), pp. 419-422

The phonon-induced dephasing dynamics of semiconductor quantum dots during nonlinear optical excitation is studied using quantum kinetic equations. We find that despite the decoherence process Rabi oscillations occur even for relatively long pulse durations and that their signatures in pump-probe experiments only get suppressed for high input pulse areas.

@article{Förstner_Weber_Danckwerts_Knorr_2003, title={Phonon-induced damping of Rabi oscillations in semiconductor quantum dots}, volume={238}, DOI={10.1002/pssb.200303155}, number={3}, journal={physica status solidi (b)}, publisher={Wiley}, author={Förstner, Jens and Weber, Carsten and Danckwerts, Juliane and Knorr, Andreas}, year={2003}, pages={419–422} }


Damping of electron density Rabi-oscillations and self-induced-transparency in semiconductor quantum dots

J. Förstner, C. Weber, J. Danckwerts, A. Knorr, in: Postconference Digest Quantum Electronics and Laser Science, 2003. QELS., IEEE, 2003

A non-Markovian quantum kinetic theory of the coupled electron-phonon system in semiconductor quantum dots is used to analyze the nonlinear dipole decoherence and light propagation dynamics for arbitrary pulse strengths and lengths.

@inproceedings{Förstner_Weber_Danckwerts_Knorr_2003, title={Damping of electron density Rabi-oscillations and self-induced-transparency in semiconductor quantum dots}, DOI={10.1109/qels.2003.238120}, number={QThJ25}, booktitle={Postconference Digest Quantum Electronics and Laser Science, 2003. QELS.}, publisher={IEEE}, author={Förstner, Jens and Weber, C. and Danckwerts, J. and Knorr, A.}, year={2003} }


Correlated influence of carrier-carrier/carrier-phonon interaction and radiative damping on semiconductor intersubband transitions

I. Waldmuller, J. Förstner, A. Knorr, M. Woerner, K. Reimann, R. Kaindl, R. Hey, K. Ploog, in: Postconference Digest Quantum Electronics and Laser Science, 2003. QELS., IEEE, 2003

The linewidth of intersubband transitions resulting from simultaneous action of many-body contributions and radiative damping is analyzed. The processes are non-additive and a self-consistent treatment is necessary to explain recent experiments.

@inproceedings{Waldmuller_Förstner_Knorr_Woerner_Reimann_Kaindl_Hey_Ploog_2003, title={Correlated influence of carrier-carrier/carrier-phonon interaction and radiative damping on semiconductor intersubband transitions}, DOI={10.1109/qels.2003.238217}, booktitle={Postconference Digest Quantum Electronics and Laser Science, 2003. QELS.}, publisher={IEEE}, author={Waldmuller, I. and Förstner, Jens and Knorr, A. and Woerner, M. and Reimann, K. and Kaindl, R.A. and Hey, R. and Ploog, K.H.}, year={2003} }


Self-induced transparency in InGaAs quantum-dot waveguides

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R.L. Sellin, D. Ouyang, D. Bimberg, Applied Physics Letters (2003), 83(18), pp. 3668-3670

We report the experimental observation and the theoretical modeling of self-induced-transparency signatures such as nonlinear transmission, pulse retardation and reshaping, for subpicosecond pulse propagation in a 2-mm-long InGaAs quantum-dot ridge waveguide in resonance with the excitonic ground-state transition at 10 K. The measurements were obtained by using a cross-correlation frequency-resolved optical gating technique which allows us to retrieve the field amplitude of the propagating pulses.

@article{Schneider_Borri_Langbein_Woggon_Förstner_Knorr_Sellin_Ouyang_Bimberg_2003, title={Self-induced transparency in InGaAs quantum-dot waveguides}, volume={83}, DOI={10.1063/1.1624492}, number={18}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={Schneider, S. and Borri, P. and Langbein, W. and Woggon, U. and Förstner, Jens and Knorr, A. and Sellin, R. L. and Ouyang, D. and Bimberg, D.}, year={2003}, pages={3668–3670} }


Pulse propagation in Bragg-resonant multiple quantum wells: from pulse breakup to compression

N.C. Nielsen, J. Kuhl, M. Schaarschmidt, J. Förstner, A. Knorr, S.W. Koch, H.M. Gibbs, G. Khitrova, H. Giessen, physica status solidi (c) (2003)(5), pp. 1484-1487

The nonlinear propagation of subpicosecond pulses resonant to the hh 1s exciton in Bragg-periodic multiple quantum wells is investigated experimentally and theoretically. We show coherent pulse breakup and its suppression for increasing pulse intensity in good agreement with calculations based on the semiconductor Maxwell-Bloch equations. For highly nonlinear excitation, pulse compression is observed which is strongly enhanced by the additional contribution of self-phase modulation in the barrier and substrate material.

@article{Nielsen_Kuhl_Schaarschmidt_Förstner_Knorr_Koch_Gibbs_Khitrova_Giessen_2003, title={Pulse propagation in Bragg-resonant multiple quantum wells: from pulse breakup to compression}, volume={0}, DOI={10.1002/pssc.200303207}, number={5}, journal={physica status solidi (c)}, publisher={Wiley}, author={Nielsen, N. C. and Kuhl, J. and Schaarschmidt, M. and Förstner, Jens and Knorr, A. and Koch, S. W. and Gibbs, H. M. and Khitrova, G. and Giessen, H.}, year={2003}, pages={1484–1487} }


Theory of the lineshape of quantum well intersubband transitions: optical dephasing and light propagation effects

I. Waldmüller, M. Woerner, J. Förstner, A. Knorr, physica status solidi (b) (2003), 238(3), pp. 474-477

We outline a theoretical description of the absorption linewidth of quantum well intersubband transitions by solving Maxwell’s equations for a non-local susceptibility including many particle effects. We show that the intersubband absorption results from a complex interplay between mean-field effects, dephasing contributions and light propagation effects, all being very sensitive to subband dispersion.

@article{Waldmüller_Woerner_Förstner_Knorr_2003, title={Theory of the lineshape of quantum well intersubband transitions: optical dephasing and light propagation effects}, volume={238}, DOI={10.1002/pssb.200303165}, number={3}, journal={physica status solidi (b)}, publisher={Wiley}, author={Waldmüller, Inès and Woerner, Michael and Förstner, Jens and Knorr, Andreas}, year={2003}, pages={474–477} }


2002

Nonlinear Polariton Pulse Propagation in Bulk Semiconductors

J. Förstner, A. Knorr, S. Kuckenburg, T. Meier, S. Koch, H. Giessen, S. Linden, J. Kuhl, physica status solidi (b) (2002), 221(1), pp. 453-457

Nonlinear propagation of optical pulses through an extended bulk semiconductor is investigated using the coupled semiconductor Maxwell‐Bloch equations including excitation induced correlations. For short pulse excitation around the exciton resonance, the theory describes the development of polariton beats and their suppression at increasing input pulse intensities due to the coupling of single exciton states to the Coulomb‐correlated continuum of two‐exciton states. A comparison of the theoretical results with experimental observations for CdSe bulk material is presented.

@article{Förstner_Knorr_Kuckenburg_Meier_Koch_Giessen_Linden_Kuhl_2002, title={Nonlinear Polariton Pulse Propagation in Bulk Semiconductors}, volume={221}, DOI={10.1002/1521-3951(200009)221:1<453::aid-pssb453>3.0.co;2-q}, number={1}, journal={physica status solidi (b)}, publisher={Wiley}, author={Förstner, Jens and Knorr, A. and Kuckenburg, S. and Meier, T. and Koch, S.W. and Giessen, H. and Linden, S. and Kuhl, J.}, year={2002}, pages={453–457} }


Theory of ultrafast dynamics and lineshape of semiconductor quantum well intersubband emitters

I. Waldmüller, J. Förstner, A. Knorr, in: Nonlinear Optics: Materials, Fundamentals and Applications, OSA, 2002

On the basis of a density matrix approach including electron-electron scattering, a detailed analysis of the temporal dynamics and the dephasing process after optical excitation in intersubband emitters is presented for a wide range of parameters.

@inproceedings{Waldmüller_Förstner_Knorr_2002, title={Theory of ultrafast dynamics and lineshape of semiconductor quantum well intersubband emitters}, DOI={10.1364/nlo.2002.we34}, booktitle={Nonlinear Optics: Materials, Fundamentals and Applications}, publisher={OSA}, author={Waldmüller, Ines and Förstner, Jens and Knorr, Andreas}, year={2002} }


Coherent nonlinear pulse propagation on a free-exciton resonance in a semiconductor

N.C. Nielsen, S. Linden, J. Kuhl, J. Förstner, A. Knorr, S.W. Koch, H. Giessen, Physical Review B (2002), 64(24), pp. 245202-245202-10

The coherent exciton-light coupling in pulse propagation experiments on the A-exciton resonance in bulk CdSe is investigated over a broad intensity range. At low light intensities, polariton propagation beats due to interference between excited states on both polariton branches are observed. In an intermediate intensity regime, the temporal polariton beating is suppressed in consequence of exciton-exciton interaction. At the highest light intensities, self-induced transmission and multiple pulse breakup are identified as a signature for carrier density Rabi flopping. Exciton-phonon scattering is shown to gradually eliminate coherent nonlinear propagation effects due to enhanced dephasing of the excitonic polarization. Calculations using the semiconductor Maxwell-Bloch equations are in qualitative agreement with the experimental data.

@article{Nielsen_Linden_Kuhl_Förstner_Knorr_Koch_Giessen_2002, title={Coherent nonlinear pulse propagation on a free-exciton resonance in a semiconductor}, volume={64}, DOI={10.1103/physrevb.64.245202}, number={24}, journal={Physical Review B}, publisher={American Physical Society (APS)}, author={Nielsen, N. C. and Linden, S. and Kuhl, J. and Förstner, Jens and Knorr, A. and Koch, S. W. and Giessen, H.}, year={2002}, pages={245202-245202–10} }


Nonlinear Pulse Propagation in Semiconductors: Hole Burning within a Homogeneous Line

J. Förstner, A. Knorr, S.W. Koch, Physical Review Letters (2002), 86(3), pp. 476-479

Features reminiscent of spectral hole burning in a homogeneous line are predicted to result from the interaction of small area pulses with the semiconductor exciton resonance. The small area pulses may be designed through pulse shaping or evolve naturally in bulk semiconductors via polaritonic effects. The spectral features exhibit signatures that are characteristic for the underlying material nonlinearity and should occur in any system with isolated spectral resonances and coherent nonlinearities.

@article{Förstner_Knorr_Koch_2002, title={Nonlinear Pulse Propagation in Semiconductors: Hole Burning within a Homogeneous Line}, volume={86}, DOI={10.1103/physrevlett.86.476}, number={3}, journal={Physical Review Letters}, publisher={American Physical Society (APS)}, author={Förstner, Jens and Knorr, A. and Koch, S. W.}, year={2002}, pages={476–479} }


Light Propagation- and Many-particle-induced Non-Lorentzian Lineshapes in Semiconductor Nanooptics

J. Förstner, K. Ahn, J. Danckwerts, M. Schaarschmidt, I. Waldmüller, C. Weber, A. Knorr, physica status solidi (b) (2002), 234(1), pp. 155-165

The occurrence of non-Lorentzian lineshapes is analyzed for a variety of nanooptical semiconductor systems such as quantum wells and quantum dots. Their origin is traced back to light–matter interaction (light propagation) and many-particle correlations (electron–electron and electron– phonon interaction).

@article{Förstner_Ahn_Danckwerts_Schaarschmidt_Waldmüller_Weber_Knorr_2002, title={Light Propagation- and Many-particle-induced Non-Lorentzian Lineshapes in Semiconductor Nanooptics}, volume={234}, DOI={10.1002/1521-3951(200211)234:1<155::aid-pssb155>3.0.co;2-r}, number={1}, journal={physica status solidi (b)}, publisher={Wiley}, author={Förstner, Jens and Ahn, K.J. and Danckwerts, J. and Schaarschmidt, M. and Waldmüller, I. and Weber, C. and Knorr, A.}, year={2002}, pages={155–165} }


Liste im Research Information System öffnen

Kontakt

Prof. Dr. Jens Förstner

Theoretische Elektrotechnik (TET)

Jens Förstner
Telefon:
+49 5251 60-3013
Fax:
+49 5251 60-3524
Büro:
P1.5.01
Web:

Sprechzeiten:

Auf Anfrage

 

Die Universität der Informationsgesellschaft