
Department of Electrical Engineering and
Information Technology

Automatic Control Group
https://en.ei.uni-paderborn.de/de/rat/

MASTER THESIS

Differentiable Physics Simulators for Legged Locomotion

Background
Physics simulators, such as Isaac Sim [1], have been widely
used in learning-based robotic control to address the data-
intensive nature of training deep reinforcement learning (DRL)
policies. A new class of simulators, known as differentiable
physics simulators (DiffSim) [2], models the forward dynam-
ics as differentiable functions, providing analytical gradient
information for the learning objective w.r.t states and ac-
tions. Recent research [3, 4, 5] has explored the theoreti-
cal properties of this approach to calculate the objective func-
tion’s gradients and investigated methods to efficiently inte-
grate them into reinforcement learning (RL) algorithms. These
approaches have demonstrated superior performance com-
pared to model-free RL methods in traditional simulation en-
vironments. However, their application in real-world settings
remains unexplored, presenting an exciting avenue for future
research.

Figure 1: A visualization of Diff Sim outputs. Con-
ceptually, one system dynamics (the simulator) to be
a function F (st−1,at−1) with at−1 ∼ πθ (·|st−1). In
this example, a differentiable simulator can provide
gradient information w.r.t. the input sequence of ac-
tion and the parameters θ of the policy network.

Project Overview
Project Goals

1. Theoretical Knowledge. Equip students with theo-
retical foundation of policy learning algorithms (PODS,
SHAC) in DiffSim environments.

2. Practical Simulation Skill. Offer hands on training with
in Warp (NVIDIA) to simulate quadruped robots and de-
ploy the policy learning algorithms.

3. Real-World Application. Validate the learning frame-
work by deploying on the quadruped robot Unitree Go2
as a case study.

4. Learning Products. Create a reproducible code
base for learning quadruped robot locomotion using
Warp/PyTorch.

Project Schedule

• Week 1-6: Literature review and background reinforce-
ment.

• Week 7-13: Programming-focused training.
• Week 14-22: Experiments and analysis the obtained re-

sults.
• Week 23-24: Project wrap-up and preparation for thesis

defense.

Requirements

• Background in reinforcement learning (especially actor-
critic and policy optimization methods). Knowledge in
control/system theory is not required, but a plus.

• Background in deep learning algorithms.
• Good Python programming skill (preferably experience

with PyTorch).
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